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These constituents currently cannot be predicted and, presum-
ably, they cannot be predicted in principle. Therefore, even if
a precise theory of forced nutation is developed in the future,
one should apply parameters determined from observations in
order to represent the quasi-diurnal motion.

Recognizing that both components in the Earth rotation can-
not be predicted with accuracy comparable to the precision of
observations, prompts us to reconsider approaches to represent-
ing the Earth’s rotation and the role of the theory. The quasi-
diurnal motion should be described with the use of parameters
determined by continuous observations in a similar way as the
UT1 and Chandler polar motion. The theory of nutation should
be considered not as a tool for data reduction or for predicting
the Earth’s orientation, but as a means for validating geophysi-
cal models. At the same time, a theory of the Earth’s rotation can
provide valuable guidance for building empirical mathematical
models.

The goals of this paper are to build such an empirical math-
ematical model, to demonstrate using a long dataset of observa-
tions that it is feasible, and to show that this approach describes
the Earth rotation at least as well as the traditional way. It should
be noted that an empirical mathematical model has a different
meaning than a theoretical model. The theoretical model relates
a function of time that describes the Earth rotation with specific
properties of the Earth’s body in the form of a solution of the
equation of dynamics. The empirical mathematical model relates
this function of time to observations using a parameter estima-
tion technique. A minimal requirement for an empirical model
is to represent the phenomena with the least possible errors for
the entire interval of observations and to provide estimates of
uncertainties. We will also try to satisfy two additional require-
ments: the model should be simple and the parameters of the
model should not be strongly correlated. If parameter estimates
are strongly correlated, their comparison with theoretical predic-
tions becomes problematic. We will represent the Earth orienta-
tion parameters (EOP) in the form of an expansion over a family
of basis functions.

The procedure for developing an empirical model of the
Earth’s rotation is presented in the rest of the paper. The choice
of the a priori model and basis functions is described in Sect. 2,
the proposed mathematical models is described in Sect. 3, the
strategy of analysis of the 22 year long dataset of VLBI obser-
vations is presented in Sect. 4, and the results of solutions are
discussed in Sect. 5. Concluding remarks are given in Sect. 6.

2. Choice of the a priori model and the basis

functions

2.1. Model of observations

We consider here that N stations observe K celestial physical
bodies. It is assumed that each station is associated with a ref-
erence point. In the case of VLBI antennas with intersecting
axes, this is the intersection point of the axes. Observing sta-
tions receive electromagnetic radiation emitted by celestial bod-
ies, and each sample of the received signal is associated with
a time stamp from a local frequency standard synchronized with
the GPS time. Analysis of voltage and time stamps of received
radiation eventually allows us to derive photon propagation time
from reference points of observed bodies to reference points of
observing stations. These distances depend on the relative posi-
tions of stations with respect to the observed bodies. The instan-
taneous coordinate vector of station i, ri(t), at a given moment
of time is represented as the sum of a rotation and translation

Fig. 1. The polyhedron of observing stations (black) and the polyhedron
of observed bodies (grey). The relative orientation of two polyhedrons is
estimated from observations of projections of vectors between observ-
ing stations and observed bodies and interpreted as the Earth’s rotation.

applied to a vector ri(t0) at initial epoch t0 as

ri(t) = M̂(t) ri(t0) + T(t) + di(t) (1)

where M̂ is the rotation matrix, T(t) is the translational motion
of the network of stations, and d(t) is a displacement vector.
Equations of photon propagation tie the instantaneous vector of
site coordinates ri(t) with vectors of observed physical bodies
and their time derivatives. These relationships allow us to build
a system of equations of conditions. Station position vectors at
a given epoch and the quantities on the right-hand side of ex-
pression 1 are estimated from a single least square solution.

The displacement vector di(t) characterizes the motion of

an individual station, while matrix M̂ and vector T describe the
motion of the entire network. Assuming the stations are solidly
connected to the Earth’s crust, we consider that this part of mo-
tion represents the motion of the entire Earth. In particular, ma-

trix M̂(t) describes the Earth’s rotation. Schematically, the me-
chanical model of observations can be viewed as the motion of
the polyhedron of observing stations with respect to the polyhe-
dron of observed bodies (Fig. 1). It should be noted that the EOP
are defined here as the parameters of an estimation model, while
in the framework of the traditional approach, they are defined as
angles between big circles on a sphere.

Since both M̂(t) and vector d(t) are functions of time, i.e.
infinite sets of points, they can be evaluated from a finite set
of observations only in the form of an expansion in some func-

tions. When we say that the matrix M̂(t) is determined from ob-
servations, this should not be understood literally, but instead it
should be construed that a mathematical model for the depen-

dence of M̂(t) on time is assumed, either explicitly or implicitly.
The model depends on a finite set of unknown parameters that
are determined from observations.

The choice of the mathematical model is not unique. On
one hand, the mathematical model should approximate the ro-
tation with errors comparable to uncertainties of observations
during the full interval of observations. On the other hand, we
should be able to estimate robustly all the parameters of the
model. Let us consider several approaches.
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2.2. The time series approach

The easiest way to represent a rotation is to estimate the ma-

trix M̂(t) at certains moment of time and, thus, generate the time

series. The 3 × 3 matrix M̂ has 9 elements, but only three of
them are linearly independent. An arbitrary rotation matrix can
be decomposed in a product of several elementary rotation matri-
ces with respect to coordinate axes at certain angles. Therefore,
it is sufficient to determine these rotation angles in order to de-

termine the matrix M̂(t) from observations.
The fundamental problem is that no observation technique,

except the laser gyroscope, is sensitive to the instantaneous
Earth’s rotation vector or to its time derivatives directly. The ro-
tation angles can be derived using the least square estimation
procedure, together with evaluating other parameters. It requires
accumulating sufficient amount of data in order to separate vari-
ables. The estimates of the Earth’s rotation angles cannot be
sampled too fast. A typical sampling rate of estimates is one day,
since this allows compensation for a certain type of systematic
error. In some cases the sampling rate can be reduced to several
hours.

Unfortunately, one cannot neglect changes in the Earth’s ro-
tation angles during the sampling interval. The accuracy in de-
termining rotation angles for the 24-h period is nowadays at the
level of 2−5 × 10−10 rad. The amplitude of the quasi-diurnal mo-
tion around axes 1 and 2 is growing with a rate that is an order
of magnitude of 7 × 10−12 rad s−1. Therefore, this motion should
first be separated from the slowly varying components. In the era
of optical astrometry, some components of this motion, namely
precession and nutation, were determined separately from ob-
servations of slowly varying components using a different tech-
nique and even different instruments. The observations of slowly
varying constituents in the Earth’s rotation angles were corrected
with a model of the quasi-diurnal motion. Herring et al. (1986)
have demonstrated that corrections to the model of the quasi-
diurnal motion around axes 1 and 2 can be estimated together
with slowly varying components of the Earth rotation, if the ro-
tation angles around coordinate axes Ai(t) are parameterized in
the form

A1(t) = b1(t) + ḃ1(t)(t − t0) + c(t) cos−Ωnt + s(t) sin−Ωnt

A2(t) = b2(t) + ḃ2(t)(t − t0) + c(t) sin−Ωnt − s(t) cos−Ωnt

A3(t) = b3(t) + ḃ3(t)(t − t0) (2)

where Ωn is the nominal diurnal Earth’s rotation rate,
7.292 115 146 706 707× 10−5 rad s−1. Parameters c(t), s(t), bi(t)
are slowly varying functions of time. This approach quickly be-
came traditional for processing VLBI experiments, and eight
parameters, b1, b2, b3, ḃ1, ḃ2, ḃ3, c, s are routinely determined for
each individual 24 h observing session.

2.3. Limitations of the time series approach

However, it is important to realize the limitations of the time se-
ries approach. First, the raw time series of estimates provides the
values of rotation angles only at specific discrete moments. They
do not determine a functional dependence of rotation angles on
time. An end user needs to have a tool for computing Earth’s
orientation at any moment of time within the interval of obser-
vations. Thus, the raw time series are the basis for the second
step of processing that involves smoothing and interpolation.
Smoothing and interpolation of the time series ck, sk, b1k, b2k, b3k

implicitly assumes that Ai(t) satisfies some mathematical model
that appears to be different from the model in expression (2) used

in the estimation process. The resulting smooth function of rota-
tion angles does not provide the best fit to observations; if it did,
no smoothing would have been needed.

Second, at the present level for accuracy of observations,
the estimation model corresponding to Eqs. (2) is not ade-
quate: one cannot neglect changes in c(t), s(t) and ḃi(t) over
the interval of estimation, typically 24 hours. Adjusting time
derivatives ċ(t), ṡ(t), b̈i(t) makes estimates of these parameters so
strongly correlated that they do not have a practical value.

Changes in the a priori model for slowly varying components
of rotation angles affect all estimated parameters, including c(t)
and s(t). In order to demonstrate this, two VLBI solutions using
3563 twenty four hour observing sessions from 1984 through
2006 were computed. The USNO Finals EOP time series of pole
coordinates and UT1–TAI with a time span of 1 day (Dick &
Richter 2004)2 were used as the a priori model in the reference
solution. The Gaussian noise with standard deviation 1 nrad was
added to all components of the USNO Finals EOP series, and
these modified time series were used in the trial solution. The
rms of differences in the total values of b(t), c(t), s(t), i.e., the
sum of a priori values and adjustments over the 24 h time inter-
vals, was 0.14 nrad for b(t) and 0.16 nrad for c(t) and s(t). Since
the accuracy of estimates of b(t), c(t), s(t) from 24 h VLBI ex-
periments is currently at a 0.3 nrad level, the accuracy of the
a priori EOP series should be better than 1 nrad in order to re-
duce the contribution its errors to a negligible level: 1/2 of the
random error in estimates. In a similar way, the change in the
a priori model for the quasi-diurnal motion also affects estimates
of c(t), s(t) and bi(t). Although one can expect that a continu-
ous process or refining the a priori model and subsequent least
square estimation should converge, this does not happen in prac-
tice. It is known among analysts who process raw data that, if the
initial a priori values are changed, the total angles, i.e. the sum of
the a priori and the adjustments, come out different. Researchers
who process time series are not always aware of these complica-
tions and tend to consider the results of processing the same ob-
servations by different analysts as independent “data”, so they at-
tribute the differences between them to so-called “analyst noise”.
These discrepancies occur due to an internal inconsistency be-
tween the estimation model, the a priori model, and the post-
processing procedure.

Third, the second step in the analysis, smoothing and inter-
polation, is rather subjective. A different degree of smoothing
produces a different series.

Finally, the time series cannot be used directly for making
an inference about the physical processes that affect the Earth’s
rotation. The time series are transformed by various analysis pro-
cedures. The dependence of the series on the a priori model and
the correlations between the elements of time series are usually
ignored. The correlations between the elements are not zero,
because the elements themselves were estimated together with
other parameters like global site velocity or source positions that
are considered common for the entire interval of observations.
Although these correlations are not strong, typically at a level
of 0.1, their contribution is significant when long time series are
processed.

Due to the complexity of the a priori model, analysts who
process the time series of estimates usually do not handle the
total angles of the Earth’s rotation, but rather adjustments to
the a priori values, tacitly assuming that analysts who processed
the raw data strictly followed a standardized procedure for data

2 Available on the Internet at ftp://maia.usno.navy.mil/ser7/
finals.all
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Fig. 2. The logarithm of the power spectrum of the tide generating
potential in kg2 m4 s−4 as a function of the angular frequency.

reduction. In reality this is often not the case. This creates an ad-
ditional source of confusion and errors.

These complications prompt us to look for a one-step proce-
dure of estimation of the Earth’s orientation parameters.

3. Representation of the Earth rotation in the form

of the expansion into basis functions

While Eqs. (2) represent rotation angles within a short period
of time, 24 h, they are not adequate for a longer period of time.
We need to find a mathematical model which would be valid for
the entire period of observations, i.e. several decades. The ma-

trix M̂a has a non-linear dependence on its arguments. A linear
estimator, the least square method, allows us to evaluate not the
matrix itself, but its small perturbation. The coordinate transfor-
mation of a vector r from the terrestrial coordinate system to the
celestial coordinate system is then written as

r
C
= M̂a(t) r

T
+

(
qe(t) + qa(t)

)
× r

T
(3)

where r
C

and r
T

designate the coordinates of the vector r in the
celestial and terrestrial coordinate systems, respectively, qe(t) is
the vector of a small perturbational rotation, qa(t) is the small
a priori rotation vector in the terrestrial coordinate system,

and M̂a(t) is the a priori matrix of finite rotation. Vectors qe(t)
and qa(t) are small in the sense that we can neglect squares of
their components. The vector qa(t) can be set to zero by an ap-

propriate choice of the matrix M̂a(t). Considering that the ac-
curacy of determination of rotation angles averaged over a 24 h
period is currently at the level of 3 × 10−10 rad, and the accuracy
of estimates of amplitudes of harmonic constituents averaged
over the period of 20 years is at the level of 10−11 rad, the com-
ponents of vectors qa(t), qe(t) should not exceed 3 × 10−6 rad.
It should be noted that these requirements on accuracy of the
a priori model are three orders of magnitude weaker than those
needed for an unbiased estimation of time series.

In order to find an appropriate basis for expanding of qe(t),
we need to use an a priori knowledge of the process under con-
sideration. The Earth’s rotation can be considered in terms of
a response to external forces. The external forces that affect ro-
tation of the solid Earth are caused 1) by redistribution of geo-
physical fluids and 2) by tidal attraction of external bodies. The
first process is not predictable and is dominating at frequencies
by modulo much less than the diurnal frequency Ωn. The tide-
generating potential exerted by external bodies can be consid-
ered to be known precisely. Its spectrum has a comb of very
sharp lines as shown in Fig. 2.

To characterize the Earth’s response, we should take into ac-
count that the triaxiality of the Earth’s inertia tensor (B − A)/C
is small, about 2 × 10−5. Therefore, the differential equations of
the Earth’s rotation are linear. First, this leads to decoupling ro-
tation around the axes 1 and 2, i.e. the polar motion, and rotation
around the axis 3, the diurnal motion. Second, the response to
harmonic external forces will result in harmonic variations of the
component 2 of qe with the same amplitude as component 1 with
the phase shifted by−π/2. Third, the excitation at the diurnal fre-
quency will result in the appearance of cross-terms t sin−Ωn and
t cos−Ωn (Moritz 1987).

Considering these factors, the following mathematical model
for the the vector of a small perturbational rotation is proposed:

qe(t) =



n−1∑

k=1−m

f1k Bm
k (t) +

N∑

j

(
Pc

j cosωm t + Ps
j sinω j t

)

+ t (S c cos−Ωn t + S s sin−Ωn t)

n−1∑

k=1−m

f2k Bm
k (t) +

N∑

j=1

(
Pc

j sinω j t − Ps
j cosω j t

)

+ t (S c sin−Ωn t − S s cos−Ωn t)

n−1∑

k=1−m

f3k Bm
k (t) +

N∑

j=1

(
Ec

j cosω j t + E s
j sinω j t

)



(4)

where Bm
k

(t) is the B-spline function of degree m deter-
mined at a sequence of knots t1−m, t2−m, . . . , t0, t1, . . . tk;
ω j are the frequencies of external forces; the coeffi-
cients fik, P

c
j
, Ps

j
, S c, S s, Ec

j
, E s

j
; are the parameters of the expan-

sion, Ωn is the nominal frequency of the Earth’s rotation. Here n
is the dimension of the B-spline basis and N is the dimension of
the Fourier basis. Thus, the vector of small perturbational rota-
tion is expanded into the basis of B-splines, which is orthogo-
nal over the entire period of observations, and the basis of har-
monic functions, which is orthogonal in the range (−∞,+∞).
The first basis approximates the slowly varying component in
the Earth’s rotation, the second basis approximates the quasi-
diurnal component, as well as other harmonic constituents of the
Earth’s rotation.

3.1. The B-spline basis

The B-spline basis functions were first introduced by Schönberg
(1946). The B-spline function of degree m depends on time and
on a monotonically nondecreasing sequence of n knots at the
interval [t1, tn]. In order to introduce splines, let us extend this
sequence by adding m elements at the beginning of the sequence
and m − 1 elements at the end of the sequence such that t1−m =

t2−m= . . . = t0= t1 and tn= tn+1= tn+2 = . . . = tn+m−1. At a given
extended sequence of n+2m−1 knots, n+m−1 B-spline functions
with the pivot element k ∈ 1 − m, 2 − m, . . . n − 1 are defined
through a recursive relationship.

The B-spline of the 0th degree with the pivot knot k ∈
[1, n−1] on the knots sequence (t1, t2, . . . , tn), such that
t1 ≤ t2 ≤ . . . ≤ tk, is determined by

B0
k(t) =

{
1, if t ∈ [tk, tk+1)
0, otherwise.

(5)

The B-spline of the mth degree with the pivot knot
k ∈ [1 − m, n − 1] on the extended sequence of knots
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Fig. 3. The logarithm of the power spectrum of quasi-diurnal vari-
ations in q1, q2 components of the rotation vector according to the
REN–2000 expansion in rad2 as a function of the angular frequency.

(t1−m, t2−m, . . . tn+m−2, tn+m−1) is expressed via the B-splines of
the m−1th degree as

Bm
k (t) =

t − tk

tk+m − tk
Bm−1

k (t) +
t − tk+m+1

tk+1 − tk+m+1

Bm−1
k+1 (t). (6)

Computation of B-splines is as simple as computation of other
polynomials. Similar simple recursive relationships exist for
derivatives of B-splines and integrals. The B-spline of de-
gree m with the pivot element k is non-zero only at the inter-
val (tk, tk+m+1). It can be proved that a sequence of n + m − 1
B-spline functions of degree m with pivot elements k ∈ 1 − m,
2 − m, . . . , n − 1 forms a basis on the interval [t1, tn]. The proof
of this and many other useful theorems related to B-splines can
be found in Nürnberger (1989).

In general, knots can be selected arbitrarily. Test runs have
shown that a set of B-spline functions of the 3rd degree with
equidistant knots with a time span of 3 days for components 1, 2,
and 1 day for component 3 of the vector qe(t) adequately repre-
sents the slowly varying component of the Earth’s rotation. Weak
constraints on values of B-splines, its first and second derivatives
can be imposed to ensure the stability of the solution at intervals
with considerable gaps in observations and at the beginning and
the end of the data set.

3.2. The Fourier basis

Modeling the quasi-diurnal components is more challenging.
The tides exerted by the Moon and the Sun cause variations
in sea currents and the sea surface at tidal frequencies. These
variations excite changes in all components of the Earth’s rota-
tion. The resonance near the retrograde diurnal frequency causes
a significant amplification at that frequency band for compo-
nents 1 and 2 of the vector qe(t). The theoretical spectrum of
this motion referred to as nutation computed by Souchay &
Kinoshita (1996, 1997) and Souchay et al. (1999) for the model
of the rigid Earth, the REN–2000 expansion, is presented in
Fig. 3.

The problem is that the spectrum is very dense, and observa-
tions during a finite period of time cannot resolve all the con-
stituents. The REN–2000 spectrum has 560 constituents with
amplitudes greater than 10−11 rad and 1551 constituents with
amplitudes greater than 10−12 rad with the frequency difference
between some of them as low as 10−15 rad s−1.

Several strategies can be used for overcoming this problem.
First, we can select frequencies with maximal amplitudes from
the theoretical spectrum and ignore constituents with an angular

frequency separation less than ωmin = 2π/∆T , where ∆T is the
interval of observations. No signal will be mismodeled if the
frequency separation between the constituents∆ω � ωmin, since
in this case the two constituents will be indistinguishable.

However, if the constituents are not very close, the mismod-
eled signal will leak into adjustments at other frequencies. The
sidelobe with the amplitude A2 and frequency ω2 of the main
constituent with the frequency ω1 can be omitted if the quan-

tity A2

ω2 − ω1

∆ωmin
is less than a certain threshold. Depending on

the threshold level, there are several hundred constituents in the
tidal spectrum for which this condition is not valid.

One way to mitigate this problem is to estimate the ampli-
tude of close sidelobes, together with the amplitude of main
constituents, and to impose strong constraints on the amplitude
of sidelobes by using some a priori information. It is plausible
to assume that the a posteriori amplitudes of constituents of the
quasi-diurnal motion for the real Earth differ from the theoretical
amplitudes computed for the rigid Earth by multiplicative factors
called transfer function, which is a smooth function of frequency
according to theory. Then we can assume that the transfer func-
tion for two close constituents with theoretical amplitudes P be
the same, i.e. the ratio of complex amplitudes A of two close
constituents is the same as for the a priori rigid Earth amplitudes,
and, therefore, should satisfy this equation:

Pc
1 + i Ps

1

Pc
2 + i Ps

2

=
Ac

1 + i As
1

Ac
2 + i As

2

· (7)

Although this approach reduces the leakage from a mismodeled
signal, it is not fully satisfactory. In general, using strong con-
straints is undesirable, since this introduces a bias in estimates.
The validity of Eq. (7) cannot be confirmed or refuted from ob-
servations. It comes from a theory. But if the estimation model
implicitly incorporates theoretical assumptions, strictly speak-
ing the estimates cannot be used for validation of the theory.
Although Eq. (7) for EOP variations caused by the tidal poten-
tial exerted by external bodies has a sound theoretical basis, we
should bear in mind that the ultimate goal of comparing theo-
retical predictions with observations is to check the validity of
assumptions built into the foundation of the theory and to make
a judgment whether the model is complete or not. If there are un-
accounted additive constituents at these frequencies, for exam-
ple, caused by the free motion, by the atmospheric, or by oceanic
excitation, the Eq. (7) may not be valid.

An alternative to constraining sidelobes is the strategy of es-
timating a wide range of constituents that are multiples of ωmin

or, in other words, indirectly performing the discrete Fourier
transform of the perturbational rotation. With this approach, in
general we are in a position to discard our a priori knowledge
about the frequency structure of the signal. Estimating the sig-
nal at discrete frequencies that are multiples of ωmin, from the
zero frequency through the Nyquist frequency, recovers any sig-
nal according to the sampling theorem. However, this kind of
approach applied to estimating the vector qe(t) has a practical
value only if the number of non-negligible constituents in the
discrete spectrum is significantly less than the total number of
samples. Since the spectrum of the tide-generating potential con-
sists of a set of discrete frequencies that are not commensurate
to each other, the frequencies that are multiples of ωmin cannot
coincide with all tidal frequencies. If the amplitude of a narrow-
band harmonic signal is not estimated at its frequency, but esti-
mated at a set of nearby frequencies that are multiples of ωmin,
the signal will be recovered only partially. The wider the
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range of frequencies, the better the approximation. The rate of
convergence depends on the amplitude of the signal and the dif-
ference between its frequency and the closest frequency used for
estimation. Selection of reasonably good a priori qa(t) values
may significantly reduce the number of frequencies needed for
estimation to reach a given level of accuracy of approximation.

Other important constituents of the signal at the retrograde
diurnal band are the free near-diurnal wobble (Moritz 1987) and
the atmospheric nutations (Bizouard et al. 1998; Yseboodt et al.
2002). Since this signal is excited by a broad-band stochastic
process, it is expected that these constituents in the Earth’s ro-
tation are also relatively broad-band. To model this signal, the
constituents at frequencies within the range of that band need
to be added to the list of constituents at tidal frequencies. It
follows from the sampling theorem of Kotelnikov (1933) that
a band limited signal with frequencies in the range of [ωl, ωh]
is completely recovered when the estimates of the sine and co-
sine amplitudes of the spectrum are made at discrete frequencies
[ωl, ωl + ωmin, ωl + 2 ωmin, . . . ωl + (N − 1)ωmin, ωh].

The tidal spectrum also has constituents with low frequen-
cies, so-called zonal tides. They affect component 3 in the vector
of the perturbational rotation. Their contribution dominates the
rate of change for this component. It would be desirable to esti-
mate the complex amplitude of this variations. Since the resid-
ual rate of change of qe is a factor of 3–10 less, constraints on
a rate of change for the residual component of qe, modeled with
an expansion over the B-spline basis can be set stronger with-
out introducing a bias in the estimates. This improves the solu-
tion stability during intervals of time with gaps in observations.
For the same reason, it would be desirable to estimate variations
in components 1 and 2 of the Earth’s rotation vector at the an-
nual and Chandler frequencies: 1.990968 × 10−7 and 1.678 ×
10−7 rad s−1, respectively.

3.3. Decorrelation constraints

It should be noted that the estimates of harmonic constituents
with lower periods than the time span between nodes of B-spline
will so highly correlate with B-spline coefficients that the sys-
tem of equations will be very close to singular. Decorrelation
constraints on coefficients of the B-spline should be imposed
in order to overcome this problem. We require that the product
of expansion over basic B-spline and Fourier functions for the
jth frequency be zero over the interval of observations:

t1∫

t0


n−1∑

k=1−m

fk Bm
k (t) ·

N∑

j=1

Pc
j cosω j t

 dt = 0

t1∫

t0


n−1∑

k=1−m

fk Bm
k (t) ·

N∑

j=1

Pc
j sinω j t

 dt = 0.

(8)

This is reduced to

n−1∑

k=1−m

fk

+∞∫

−∞

Bm
k (t) cosω j t dt = 0

n−1∑

k=1−m

fk

+∞∫

−∞

Bm
k (t) sinω j t dt = 0.

(9)

Thus, two constraint equations for each frequency are to be im-
posed. The Fourier integral of a B-spline of the mth degree in
Eq. (9) on a knots sequence (tk, tk+1, . . . , tn) with the pivot knot k

such that k −m ≤ n− 1 is expressed through the Fourier integral
of a B-spline of the m − 1 th degree:

Fm
k (ω) =

+∞∫

−∞

Bm
k (t) eiω t dt = −

i

ω

(
Bm

k (tn) eiω tn − Bm
k (t1) eiω t1

)

+
i m

ω(tk+m−tk)
Fm−1

k (ω)+
i m

ω(tk+1−tk+m+1)
Fm−1

k+1 (ω). (10)

The Fourier integral of a B-spline of the 0th degree on the same
sequence (tk, tk+1, . . . , tn) with the pivot knot i is

F0
k (ω) =

+∞∫

−∞

B0
k(t) eiω t dt =

i

ω

(
eiω tk − eiω tk+1

)
. (11)

4. Analysis of VLBI observations

4.1. The VLBI dataset

A set of estimates of group delays at frequency bands cen-
tered around 2.2 and 8.6 GHz from January 1984 through
January 2006 was used to validate the proposed approaches. The
International VLBI Service for Geodesy and Astrometry (IVS)
(Vandenberg 1999) provides online access to the collection of
all observations made in the geodetic mode under various as-
trometric and geodynamics programs from 1979 through now
at http://ivscc.gsfc.nasa.gov. The VLBI data set shows
a substantial spatial and time inhomogeneity. Typically, obser-
vations are made in sessions with a duration of about 24 h.
Observations were sporadic in the early 80s, but in January 1984
a regular VLBI campaign for the determination of the Earth
orientation parameters started first with 5-day intervals, from
May 1993 with weekly intervals, and from 1997 twice a week.
In addition to these observations, various other observing cam-
paigns were running. On average, 150 sessions per year have
been observed since 1984.

During that period 153 stations participated in observations,
although a majority of them observed only during short cam-
paigns. The observations at stations that participated in less than
20 000 observations, and the stations that only participated in
at regional networks with sizes of 2000 km and less were dis-
carded. Forty four stations remained. Observations of sources
that were observed in less than 4 sessions and gave less than
64 usable pairs of dual-band group delays were excluded. The
data before January 1984 were also discarded. In total, ∼5% of
the observations were excluded, and the remaining data from
3563 sessions between January 1984 to August 2006, more than
4.6 million of dual-band pairs of group delays, were used in the
analysis.

The number of participating stations in each individual ses-
sion varies from 2 to 20, although 4–7 is a typical number. No
station participated in all sessions, but every station participated
in sessions with many different networks. All networks have
common nodes and, are therefore, tied together. Networks vary
significantly, but more than 70% of them have a size exceeding
the Earth’s radius.

4.2. Theoretical model

The state of the art theoretical models were used for computing
the theoretical time delay and its partial derivatives. The proce-
dure in general follows the approach presented by Sovers et al.
(1998) with some minor refinements. The expression for time







L. Petrov: The empirical Earth rotation model from VLBI observations 367

Table 2. The weighted root mean squares of the differences between estimates of the Earth rotation model from analysis of VLBI observations
and the USNO Finals EOP model for the period of [1996.0, 2006.0]. The statistics in rows 1 and 2 correspond to solution B, which follows the
proposed approach. The statistics in row 3 correspond to solution gsf2006c, which follows the traditional approach.

Solution q1 q2 q3 q̇1 q̇2 q̇3

ERM all 0.79 × 10−9 rad 0.99 × 10−9 rad 0.64 × 10−9 rad 0.78 × 10−14 rad s−1 1.16 × 10−14 rad s−1 0.92 × 10−14 rad s−1

ERM exp 0.58 × 10−9 rad 0.69 × 10−9 rad 0.52 × 10−9 rad 0.77 × 10−14 rad s−1 1.15 × 10−14 rad s−1 0.81 × 10−14 rad s−1

gsf2006c 0.55 × 10−9 rad 0.57 × 10−9 rad 0.42 × 10−9 rad 1.89 × 10−14 rad s−1 2.00 × 10−14 rad s−1 1.52 × 10−14 rad s−1

Fig. 4. The component 1 of the residual perturbational vector with re-
spect to the Earth rotation USNO Finals EOP model.

where κ = −(Ωn + z01 + ζ01) × 86400/2π, and parame-
ters E0, E1, E2, E

c
i
, E s

i
, γi, ψ,∆ψ,∆ε, ε0,Ωn, z, ζ are from expres-

sions 13. The coefficients of the interpolation spline for qu were
computed. These coefficients form the USNO Earth rotation
model as a continuous function of time. Since the GPS results
almost entirely dominate components 1 and 2 of the Earth rota-
tion vector from that model, they can be considered independent
from our analysis of VLBI observations.

The differences for component 1 between the USNO model
and our results from solution B after removal the contribution
of harmonic variations with periods less than 2 days are shown
in Fig. 4. No pattern of systematic differences is revealed. The
statistics of these differences for all three components of the
small vector of the Earth rotation and their time derivatives com-
puted at the equidistant grid with time interval 2.5 h are pre-
sented in the 1st row of Table 2.

Since the VLBI observations are not carried out continuously
due to budget limitations, the accuracy of the Earth orientation
model is the highest within an interval of observations and the
lowest at moments of time when there were no observations. In
the framework of the traditional approach, the EOP are estimated
on moments of time in the middle of a 24 h observing session.
The statistics of the differences of the EOP series from analysis
of VLBI observations gsf2006c3 for moments in the middle of
1426 observing sessions are shown in the 3rd row of Table 2. For
comparison, the EOP were computed from results of solution B
at exactly the same epochs, and these statistics of the differences
with respect to the USNO model are presented in the 2nd row of
this table.

Analysis of statistics shows that the differences in compo-
nents 1 and 2 of the Earth’s orientation according to the pro-
posed and traditional approaches do not exceed 20%. At the
same time the proposed approach gives the estimates of all the
components of the Earth’s angular velocity vector by a factor of
1.5–2.0 closer to the GPS results than the estimates produced in

3 Available on the Web at
http://vlbi.gsfc.nasa.gov/solutions/2006c

Fig. 5. The time series of the estimates of the daily offsets of nutation in
obliquity when the empirical Earth rotation model from solution B was
used as the a priori. The wrms is 3.9 × 10−10 rad.

Fig. 6. The time series of the estimates of the daily offsets of nutation
in obliquity when the MHB2000 nutation expansion was used as the
a priori. The wrms is 9.8 × 10−10 rad.

the framework of the traditional approach. According to the tra-
ditional approach, the EOP rates and nutation daily offsets are
computed for each session independently, which makes them
less stable. With the proposed approach, at a given epoch several
experiments contribute to estimates of EOP rate, which makes
them more robust.

Analysis of the differences in amplitudes of the harmonic
terms of components 1 and 2 of the vector of perturbational ro-
tation at the retrograde diurnal band with respect to the semi-
empirical MHB2000 expansion (Mathews et al. 2002), showed
they can reach 0.2 nrad for some terms. Detailed analysis of
these differences is beyond the scope of the present paper. In
order to test results, the empirical Earth rotation model from so-
lution B was used as the a priori for the solution that estimated
the time series of daily offset to nutations. The weighted root
mean square of the differences for the period of [1996.0, 2006.0]
is 0.39 nrad when results of solution B were used as the a priori,
and 0.98 nrad when the MHB2000 was used. The daily offsets to
nutation in obliquity∆ε(t) with respect to both models are shown
in Figs. 5–6.
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Fig. 7. The power spectrum of the estimates of the quasi-diurnal varia-
tions of components 1 and 2 of the perturbational vector of the Earth’s
rotation from solution A in the vicinity of the frequency of the near-
diurnal free wobble. The estimate for the frequency −7.312026 ×
10−5 rad s−1, which corresponds to the tidal frequency ψ1, is not shown.

5.2. Harmonic components in the Earth’s rotation

Analysis of estimates of the harmonic components showed ex-
cessive power near the frequency of the near-diurnal retrograde
wobble, as was expected. The spectrum turned out rather broad,
spanning a rather wide band, and it partly overlaps with the tidal
frequency −7.312026 × 10−5 rad s−1 that corresponds to the an-
nual retrograde nutation as shown in Fig. 7. It was found by
Herring et al. (1986) that the near-diurnal wobble cannot be rep-
resented by a purely harmonic model with a constant amplitude.
This means that when this component of the Earth’s rotation is
represented in the frequency domain, several constituents in the
spectrum will correspond to it.

Analysis of the results of the C family solutions revealed sev-
eral constituents with the non-tidal signal. The spectrum of com-
ponents 1 and 2 in the vicinity of the frequency −2Ωn, i.e. the
K2 tide, turned out rather broad. The excerpt of the power spec-
trum produced from estimates of sine and cosine amplitudes of
the components 1 and 2 is shown in Fig. 8. This signal cannot be
attributed to the spectral leakage, since no excessive power was
found in the vicinity of even a stronger tide at the M2 frequency.
A relatively broad-band signal in the vicinity of the −3Ωn fre-
quency, i.e. K3, was found at the 3rd component of the rotation
vector. The excerpt of the power spectrum produced from esti-
mates of sine and cosine amplitudes of the component 3 is shown
in Fig. 9. A weaker signal in the estimates can also be revealed
in the vicinity of the −4Ωn frequency. A similar signal can be
seen at prograde frequencies in the vicinity K2,K3,K4 at com-
ponents 1 and 24.

Another peculiarity of the spectrum are sharp peaks at fre-
quencies ±4/5Ωn, ±6/5Ωn at a level of 2–7σ above the noise
level. No convincing explanation was found, but it is suspected
that this signal in the estimates may be an artifact caused by er-
rors in modeling by analogy with a detection of a very strong
signal in estimates of the harmonic constituents of the pertur-
bational Earth’s rotation from GPS time series at frequencies
that are multiple to the diurnal frequency: S 1, S 2, S 3, S 4, etc.,
reported by Rothacher et al. (2001). It should be noted that no
non-tidal signal at S 3, S 4 frequencies is seen from analysis of
VLBI group delays.

Solution D did not reveal other missed harmonic signals in
the diurnal band.

4 Since component 3 was considered as a real value process, its spec-
tral power at negative frequencies is the same as at positive frequencies.

Fig. 8. The power spectrum of the estimates of the quasi-diurnal varia-
tions of components 1 and 2 of the perturbational vector of the Earth’s
rotation from solution C in the vicinity of the −K2 frequency. The es-
timate for the frequency −1.458423 × 10−4 rad s−1, which corresponds
to the −K2, is not shown.

Fig. 9. The portion of the power spectrum of estimates of the ter-diurnal
variations of components 1 and 2 of the perturbational vector of the
Earth’s rotation vector in the ter-diurnal band. The broad peak is seen
near the −K3 frequency.

5.3. Error analysis

The formal uncertainties of the amplitudes on harmonics con-
stituents can be evaluated on the basis of the signal-to-noise ra-
tio of fringe phases used for computing group delay by invoking
the law of error propagation. These uncertainties are in a range
of 5–12 prad. Analysis of the estimates of the constituents at
the frequency bands where no tidal or no-tidal signal was de-
tected provides a more reliable measure of noise in adjustments.
It is 16 prad for components 1, 2 and 13 prad for component 3
for the diurnal band; 13 prad and 10 prad for these components
at other frequency bands. This corresponds to displacements of
0.06–0.12 mm at the Earth’s surface. Evaluation of the level
of systematic errors is more problematic. The major possible
source of systematic errors is considered to be a residual mo-
tion of the individual stations. In fact, the rotation of the station
polyhedron was evaluated, and it was assumed that the motion of
this polyhedron is a representative measure of the Earth’s rota-
tion. This assumption is valid to the extent that residual horizon-
tal motion of individual observing stations is negligible. Petrov
& Ma (2003) estimated harmonic site position variations and
found that the accuracy of modeling the horizontal motion of
individual stations is at the level of 0.4 mm. In the case of the
errors of modeling being completely uncorrelated, this error will
be diluted as

√
Neff , where

√
Neff is the effective number of

observing stations, 10–44, depending on how to define the
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effective number of stations. Unfortunately, the distribution of
residual motions of stations at tidal frequencies shows a pattern
of a systematic behavior, which does not support the hypothesis
of uncorrelated errors. A conservative estimate of the possible
contribution of the unmodeled residual motion of the network of
stations to the estimates of harmonic constituents of the pertur-
bational rotation suggests a dilution factor of 2, i.e. the surface
displacements ∼0.2 mm. That means systematic errors may be
two times greater than random errors.

Dehant et al. (2003) investigated the influence of systematic
errors due to the neglect of the modeling source structure. It was
suggested to split the observed radio sources into two classes,
“stable” and “unstable”, and either to remove unstable sources
from analysis or to estimate the time series of their positions.
In this paper a different approach was used: proper motion of
those sources that had a long enough history of observations was
estimated. This method is supposed to reduce systemic errors in
the estimates of the harmonic constituents in the perturbational
rotation vector.

6. Conclusion

It was demonstrated that the empirical Earth rotation model
can be determined directly from observations over a period of
22 years using the least square estimation technique. The ad-
vantage of the proposed approach is that a continuous function
describing the Earth’s orientation is determined in one step with-
out producing intermediate time series. The consistency between
station positions, source coordinates, and the empirical Earth ro-
tation model is automatically achieved. Another advantage of
the proposed approach is that a simplified a priori model with
only 31 numerical parameters is sufficient, while the traditional
approach needs a complicated a priori model of precession, nuta-
tion, high frequency harmonic variations of the Earth’s rotation,
and a filtered and smoothed time series of the Earth orientation
parameters produced in the previous analysis, in total 46 000 nu-
merical parameters (McCarthy & Petit 2004).

The traditional approach to describing the Earth’s rotation
follows the formalism of either Newcomb and Andoyer or
Guinot (1979) and Capitaine et al. (1986), and involves such
notions as the celestial intermediate pole, the point of the ver-
nal equinox, the non-rotating origin, the ecliptic, and other axes,
points, planes, and circles on the celestial sphere. The advantage
of the empirical Earth rotation model is that it is conceptually
simpler, since it is built entirely kinematically and does not re-
quire introduction of intermediate points, axes, planes that are
not observable.

It was demonstrated that the empirical Earth rotation model
derived from analysis of VLBI observations gives the differences
with respect to the EOP derived from analysis of independent
GPS observations at moments of observation at the same level,
within 20%, as the differences of the VLBI EOP series produced
with the traditional approach. The advantage of the proposed
approach is that the estimates of the EOP rates are a factor of
1.5–2.0 closer to the GPS time series than the VLBI EOP rates
estimated following the traditional approach.

When results of analysis of observations are compared with
theoretical predictions, two approaches can be taken: a) the
parameters that describe empirical data are formulated through
parameters of the theoretical models; b) theoretical predictions
are transformed to a form that can be unambiguously determined

from the observations. Representation of the Earth’s rotation in
the form of the expansion into basis functions establishes a foun-
dation for the second approach.

Scientific interpretation of the results of estimation of the
empirical Earth rotation model will be given in the next paper.
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Table 3. Numerical values of the a priori Earth rotation model parameters used in data reduction.

Var Value Units Source

ζ00 1.140216587056520 × 10−10 rad Simon et al. (1994)

ζ01 3.542805701761733 × 10−12 rad s−1 Simon et al. (1994)

ζ02 1.471291601425477 × 10−25 rad s−2 Simon et al. (1994)

θ00 9.909515599113584 × 10−11 rad Simon et al. (1994)

θ01 3.079019263961936 × 10−12 rad s−1 Simon et al. (1994)

θ02 −2.076601527511399 × 10−25 rad s−2 Simon et al. (1994)

z0 1.140216587060519 × 10−10 rad Simon et al. (1994)

z1 3.542805701761733 × 10−12 rad s−1 Simon et al. (1994)

z2 5.331975251279779 × 10−25 rad s−2 Simon et al. (1994)
ε00 0.409092629687089 rad Simon et al. (1994)

ε01 −7.191223191481661 × 10−14 rad s−1 Simon et al. (1994)

ε02 −7.399638794037328 × 10−29 rad s−2 Simon et al. (1994)
S 0 1.753368559233960 rad Aoki (1982)

Ωn 7.292115146706979 × 10−5 rad s−1 Aoki (1982)

p1 −8.377867467753367 × 10−5 rad Souchay & Kinoshita (1996)

p2 −6.193374542381407 × 10−6 rad Souchay & Kinoshita (1996)

e1 4.473817016047498 × 10−5 rad Souchay & Kinoshita (1996)

e2 2.682642812740089 × 10−6 rad Souchay & Kinoshita (1996)
α1 2.182438855728973 rad Simon et al. (1994)
α2 3.506953516079786 rad Simon et al. (1994)

β1 −1.069696206302000 × 10−8 rad s−1 Simon et al. (1994)

β2 3.982127698995000 × 10−7 rad s−1 Simon et al. (1994)

E0 2.260937669429621 × 10−3 rad LSQ fit

E1 1.029854567486117 × 10−12 rad s−1 LSQ fit

E2 −7.875297448491237 × 10−22 rad s−2 LSQ fit

Ec
1

9.776692309499138 × 10−5 rad Dickman (1993)

Es
1

−6.857935725000193 × 10−6 rad Dickman (1993)

Ec
2

3.783804480256964 × 10−6 rad LSQ fit

Es
2

2.878954568890594 × 10−6 rad LSQ fit

γ1 −1.069696206302000 × 10−8 rad s−1 Dickman (1993)

γ2 −1.183000000000000 × 10−8 rad s−1 LSQ fit


