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1 Amplitude normalization

The raw fringe amplitude has a number of biases. First bias is due to digitization. A general
theory of digitization correction is developed by Kogan (1998). For a case of small amplitudes, i.e
cross-correlation, the digitization correction on does not on the amplitude and is reduced to scaling:
for a case of two-bit digitization the raw fringe amplitude has to be divided by 0.8825, for the case
of 1-bit sampling has to be divided by 0.6366, and for a case of mixed 1-bit/2-bit sampling when
one station records 2-bit and another records 1-bit the amplitude has to by divided by the scaling
factor of 0.7495 in order to compensate distortion caused by digitization.

Digital correction of the autocorrelation is more complicated for two reasons. Firstly, for a case
of large amplitudes the digital correction depends on amplitude and its functional dependence is
not described by a simple scaling law. Secondly, the digital correction is defined for the correlation
coefficient, not for the visibility spectrum, which is the Fourier transform of the lagged correlation.
In order to perform digital correction of autocorrelation data, we do the following steps:

• put autocorrelation data in [1,N] part of the array sized [1,2N], where N is the number of
spectral channel in a given IF;

• compute autocorrelation at point N+1 by linear extrapolation: A[N+1] = 2*A[N] - A[N-1];

• pad the remaining part of the extended autocorrelation array to zero: A[N+2:2N] = 0.0;

• perform Fourier transform of the extended autocorrelation array of dimension 2N and divide
it by 2N for proper normalization: a = F(A)/(2N). Since the input autocorrelation is
Hermitian, the output will have N+1 non-zero elements.

• compute the autoconvolution of the rectangular taper as T (i) = 1− (i− 1)/N ;

• normalize autocorrelation to 1 at zero lag: Tn = a(1)

• de-taper and normalize Fourier transform of the autocorrelation: an[i] = a[i]/(Tn ∗ T [i]),
which gives are the autocorrelation coefficient in lag domain;

• apply digital correction to the autocorrelation coefficient using tables computed by Kogan
(1993a): ad[i] = D(an[i]) for i = 1, 2, . . . N + 1;

• Add symmetrical values of the lag correlation function in order to get real autocorrelation
spectrum: ad[i] = ad[2N + 2− i] for i = N + 2, N + 3, . . . 2N ;

1



• Perform inverse Fourier transform of ad[i], which provides us the autocorrelation corrected
for distortion due to digitization.

The explanation of the algorithm can by found in (Kogan, 1993b).
The correlator may also have biases in fringe amplitude. In order to calibrate for biases common

for autocorrelation and cross-correlation, we compute average of autocorrelation amplitude over the
IF bandwidth. For the perfect hardware and correlator this average value should be 1.0 according
to Parseval theorem. It can deviate from 1.0 for several reasons. If the amplitude level of 2-bit
sampling deviates from the optimal level, the 2-bit digitization correlation deviates from 0.8825.
Old VLBA hardware correlator had a weird factor of 0.9028 for 1-1 bit sampling, 1.6834 for 2-2 bit
sampling and 1.2347 for 1-2 bit sampling (Kogan, 1995). The origin of these factors is lost1. The
DiFX software correlator does not have these factors intrinsically, but it scales the visibility data
by them to have raw amplitude as close as possible to the old hardware VLBA correlator. The
SFXC software correlator does not apply these factors.

In order to correct visibility for scaling factors common for autocorrelation and cross correla-

tion we divide cross-correlations by
√

Āi · Āj , where Āi is the mean autocorrelation corrected for
digitization distortion averaged over both frequency and time. NB: even if we mask out a portion
of the bandwidth, we average autocorrelation over the entire bandwidth regardless of mask.

There is a caveat related to the old VLBA hardware correlator. It was found that for high
amplitudes (autocorrelation case), the internal correlator registers saturate. This saturation de-
creases the accumulated amplitude due to limited number of bits in the digital representation of
the amplitude. Though, the saturation effect is negligible in cross correlation. The saturation is 1
+ w/8 for single polarization data and 1 + w/4 for dual polarization data, were w the data weight
defined as the ratio of the number of bits used to the total number of bits recorded. Since the
saturation decreases the autocorrelation amplitude and since we have divided the cross-correlation

amplitude by
√

Āi · Āj , we need divide cross-correlation amplitude by the saturation factors in
order to compensate cross-correlation amplitude.

The input FITS-IDI files have a field “CORRELAT” that supposed to designate the correlator.
Unfortunately, this field is not always populated, so PIMA may not know which correlator
generated the data. PIMA has keyword FRIB.AMPL FUDGE TYPE that specifies the
correlator name directly (for instance DIFX or VLBA (for hardware correlator)). PIMA supports
a variant of saturation calibration VLBA KOGAN that 1 + 1/8 for single polarization data and
1 + 1/4 for dual polarization data, i.e. considering that weights do not affect the saturation
calibration. It remains obscure which flavor of saturation calibration is better.

2 Bandpass computation

We consider that observed visibility V12,obs is related to the true visibility V12 with the ideal hard-
ware as

V12,obs(f) = V12,ideal(f)B
∗

1(f) ·B2(f) (1)

where Bi is a complex station-dependent function that describes distortion of the signal in the
VLBI hardware2 Typically, the amplitude response at a baseline is a tooth-like.

There are two factors that determine the amplitude response. First, the amplitude response of
an individual IF to a signal with a flat spectrum distorts the input signal and makes its spectrum

1I asked in 2013 Leonid Kogan who derived these factors what is their origin and he replied firmly: “I do not

remember”.
2This definition describes the amplitude response to voltage. AIPS has the same convention. Alternatively one

can define bandpass as the amplitude response to power.
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non-flat. The autocorrelation spectrum describes the spectrum of a flat spectrum signal that passes
through the VLBI hardware. Secondly, a signal at a given IF has an admixture of the signal from
adjacent IFs, mainly at the edges of the IF band (see illustrations in the Appendix). This leaked
signal is not coherent and causes decorrelation. Decorrelation is a function of frequency: it is
greater at the edge of the IF. Therefore, a cross-correlation bandpass B∗

1(f) · B2(f) in general is
not equal to the product of autocorrelation bandpasses

√

A1(f) ·A2(f).
The bandpass can be determined from observations of strong sources with continuum spectrum.

We can neglect changes of the flux density over the intermediate frequency (IF) bandwidth and
consider the spectrum flat, i.e frequency-independent. In that case the product of voltage band-
passes B∗

1(f) · B2(f) is just the normalized cross-spectrum of the calibrator spectrum 1
nV12,obs(f),

where n is the normalization coefficient.
PIMA determines bandpass at a given polarization in three steps. At the first, so-called

init step, PIMA examines results of the coarse fringe search and finds the observations with the
greatest SNR at each baseline with the reference station. Initially, the so-called power baseline
bandpass Bir,bas = 1

nbas
Vir,obs(f) is computed, where the normalization factor over the total IF

band is

npow(B, fl, fh) =

fh
∫

fl

|B(f)| df

fh − fl
, (2)

where, fl and fh are the lower and upper frequencies of the IF, i.e. we require the normalized
bandpass to have unity integral over the IF bandwidth. The visibility Vir,obs(f) used for bandpass
computation are phase rotated with results of fringe fitting and averaged over time:

Vir,obs(f) =
∑

k

∑

j

vk(fj , t)e
2π (f0τp + f0τ̇p(tk−t0) + (fj−f0)τg + (fj−f0)τ̇g(tk−t0)), (3)

where vk is the raw visibility, τp is phase delay, τg is group delay, τ̇p and τ̇g are their time deriva-
tives, f0 and t0 are the reference frequency and fringe reference time respectively. if the schedule
had strong sources with SNR > 100, usually there is not need to average over frequency. If by
oversight the schedule did not have strong sources, the IF is split into segments, and visibilities are
coherently averaged over segments. The number of spectral channels within a segment is controlled
by parameter BPS.MSEG ACCUM. Value 1 means that no averaging is to be performed.

Since even for sources with the SNR > 1000 the visibility spectrum Vir,obs(f) has a noticeable
scatter, PIMA smooths it with either using Legendre polynomial (BPS.INTRP METHOD:

LEGENDRE) or smoothing B-spline of the 3rd degree (BPS.INTRP METHOD: SPLINE).
ParametersBPS.DEG AMP andBPS.DEG PHS control the degree of the Legendre polynomial
or the number of knots for the smoothing B-spline. When processing Vir,obs(f) phase, PIMA
performs phase ambiguities resolution. Normalization is performed after smoothing.

Then the bandpass of the reference station is computed as

Br(f) =
1

npow
(B, fl, fh)

(

n−1
∏

i

|Bir,bas|
)

1
2(n−1)

(4)

where normalization is computed the same was as in equation 2. The bandpass of the reference
stations is set to the geometric mean of the bandpasses of all remote stations. Its phase is set to
zero.
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After we found the bandpass of the reference station, we compute voltage bandpasses from
power bandpasses: Bir =

1
nvol

(Br, fl, fh)Bir,bas/Brf . Voltage bandpass is normalized differently:

nvol(Bi, Br, fl, fh) =

fh
∫

fl

√

|Bi(f)| · |Br(f)| df

fh − fl
, (5)

i.e. we require the square root of power of the product of the bandpasses at a given station and
the reference station to have the integral over the IF bandwidth equal to unity.

The second step is computation of the bandpass in the so-called accumulative mode. First,
PIMA finds the list of N observations with the highest SNR for each baseline with the references
station. Parameter N is defined in parameter BPS.NOBS ACCUM and does not count the
observation used in the init mode. Fringe fitting for these observations is repeated and the phase
bandpass computed in the init mode is applied to the observations before fringe fitting and the
amplitude bandpass is applied after the fringe fitting. Expression “apply bandpass” means the
visibilities of an observation are divided by the bandpass. Expression “apply phase bandpass”
means the visibilities are divided by B∗

1 ·B2/(|B1| |B2|) and expression “apply amplitude bandpass”
means the visibilities are divided by |B1| |B2|. Since we divide raw amplitudes by the product ot
amplitude bandpasses, this explains why we normalize the bandpasses at individual stations to the
square root of power. It should be noted that the amplitude bandpass should never be applied
before fringe fitting. Applying the amplitude bandpass before fringe fitting would have resulted
to up-weighting visibilities at frequencies where the bandpass is small, i.e. at the edges of the
bandwidth. Such up-weighting would have decreased the SNR.

After running fringe fitting in the accumulative mode, PIMA computes residual time-averaged
complex visibilities normalized over (i.e. divided by) time and frequency. Had the bandpass
been absolutely stable in time, the residual spectrum presented as a complex number would be
(1.0, 0.0). PIMA computes the arithmetic average phase of normalized residuals R as Ψ(f) =
∑

Ri(f)/|Ri(f)|/n and geometric average of their amplitudes as κ(f) =
∏ |Ri(f)|1/n and computes

phase and amplitude of accumulative bandpass as Ψ(f) and 1/nvol(Bi, Br, fl, fh) κ(f)/|Br(f)| re-
spectively. The amplitude of the stacked residual amplitude bandpass is divided by the amplitude
of the init bandpass of the reference station and, thus, is transformed to the voltage bandpass.
The bandpass of the reference station is not updated at this step.

The third step is computation of the bandpass in the so-called fine mode using least squares.
First, PIMA finds the list of K observations with the highest SNR for each baseline with the
references station. Parameter K is defined by keyword BPS.NOBS FINE and includes the
observation used in the init mode. Similar to the previous step, the phase bandpass computed
in the accumulative mode is applied before fringe fitting, the amplitude bandpass is applied after
fringe fitting, and the normalized complex residuals R(f) averaged over time are computed. Then
the coefficients of the bandpass expansion for all stations are computed in a single least square
solution. The phase bandpass is computed as

∑

birPj(f) =
Rir(f)

|Rir(f)|
. (6)

where bij are the coefficients for the i-th station and Pj(f) is the basic function. The amplitude
bandpass is computed as

∑

aiPj(f) + arPj(f) = log |Rir(f)|. (7)
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Here aij are the coefficients of expansion of the bandpass logarithm for stations with index i
and r. After computation of the bandpass in fine mode, PIMA computes residuals after apply-
ing this bandpass and identifies the observations with the largest root mean square phase residuals
and the observations and the largest root mean square amplitude residuals. If the residuals ex-
ceed the limits specified by parameters BPS.PHAS REJECT and BPS.AMPL REJECT,
PIMA removes such an observation from the bandpass computation and updates the least
square solution. The iterations are performed till either the rms of residuals becomes less than
BPS.PHAS REJECT and BPS.AMPL REJECT, or the number of remaining observation at
a given baseline becomes BPS.MINOBS FINE.

The final bandpasses for all stations but the reference one are renormalized once again using
voltage renormalization.

The main reason why a three-step procedure is implemented in PIMA is to detect and mitigate
the influence of bad observations on bandpass computation. It is not uncommon when observations
with the largest SNR are affected by the radio interference (RFI). If only one observation is used
for bandpass computation at a given baseline, i.e. bandpass computation is limited to the init

mode, and that observation is affected by RFI, the bandpass will be suitable only for that obser-
vation, and all other observations will become affected by the influence of the RFI when corrupted
bandpass is applied. Bandpass computation in the accumulative mode allows to dilute the in-
fluence of bad observations. Bandpass computation in the fine mode allows to remove several
bad observations from bandpass computation automatically mode and completely eliminate their
influence. The three-step procedure also mitigates possible bandpass computation failures due to
incorrectly resolved phase ambiguities. Phase ambiguities need be resolved only when processing
the first observation in the init mode. All other steps use visibilities with applied phase bandpass,
and the residual phases are supposed to be much smaller than 1/2 phase turn.

It is important to examine logs of bandpass computation. Statistics of residuals of bandpass
computation allows us to make a judgment how stable the bandpass is over time. It may happen
that due to a hardware reset bandpass at one or more stations is different for a portions of the
experiment. At the moment, PIMA does not provide a convenient tool for processing observations
with jumps in bandpasses. Processing such observations requires splitting the dataset into segments
with stable bandpass and computing the bandpass for the segments separately.

I would like to emphasize that one of the most important part of VLBI data analysis is to
compute a precise phase and amplitude bandpass. It is a waste of time to process VLBI data

with a poor bandpass!

3 Bandpass renormalization

PIMA applies voltage normalization for bandpass. That normalization preserves the sum of
amplitudes over frequency before and after applying the bandpass. This choice seems natural
since it does not depend on specific knowledge of the hardware. However, this “natural” choice
is often results in a bias. Two factors attenuate cross-correlation amplitude at the IF edges: the
IF filter and the presence of signal from adjacent IFs that is not coherent. The central part
of a bandpass is usually not affected. PIMA allows to specify the range of the bandwidth as
representative and preforms renormalization. PIMA performs renormalization when it runs splt
task. Keyword SPLT.BPASS NRML METHOD specifies whether to run renormalization and
specifies SPLT.BPASS NRML RANGE the range of representative bandwidth as a fraction of
the total bandwidth. 0.20:0.85 is a good choice for processing VLBA data with rdbe pfb digital
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filter setup. New normalization is computed as

nren(Bi, Br, fl, fh) =

fh
∫

fl

Mi Mr

√

|Bi(f)| · |Br(f)| df

fh
∫

fl

Mi Mr df

, (8)

where Mi and Mr are so-called fringe masks, i.e. masks used during fringe fitting. This choice
of renormalization preserves the sum of amplitudes over frequency before and after applying the
bandpass within the representative portion of the bandwidth, excluding the spectral channels that
are masked out.

PIMA supports four masks: autocorrelation mask, bandpass mask, fringe mask and split mask.
Fringe mask is applied during fringe fitting, except task bpas. Task bpas uses the bandpass mask
for fringe fitting. Task splt uses split mask for computing time and frequency averaged visibilities.
It is important to emphasize that just fringe mask is to be used for bandpass renormalization.

Applying bandpass renormalization usually results in an increase of image flux density. Such
bandpass renormalization mitigates amplitude reduction due to decorrelation at the edges of the
bandpass. Though, as Figures 1–2 show, the choice of the representative portion of the bandwidth
is at some extent subjective. The subjectiveness in the selection of the representative portion of
the bandpass may result in up-scaling or down-scaling flux densities at a level of several pro cents.

4 Polarization bandpass

PIMA supports so-called polarization bandpass Pi(f) that is defined this way:

V RR
12,obs(f) = V RR

12,ideal(f)B
∗

1(f) ·B2(f)

V LL
12,obs(f) = V LL

12,ideal(f)B
∗

1(f) ·B2(f) P
∗

1 (f) · P2(f) · e2 i (ψ1(t)−ψ2(t)),
(9)

where ψi(t) is the feed horn rotation angle at the i-th station with respect to the local meridian.
Using other language, the polarization bandpass is the averaged ratio of the spectrum of complex
visibilities at LL polarization to the complex visibilities at RR polarization with phases corrected
for the feed horn rotation.

When dual-band data are processed, PIMA treats RR data as the 1st polarization. It computes
single-band RR bandpass using the procedure outlined above. When dual band are processed and
keywordPOLARCAL FILE is not set toNO, PIMA for each step, init, accum, fine computes
the corresponding polarization bandpass using the same observations as for RR bandpass. Thus,
if POLARCAL FILE is not set to NO, PIMA computes two bandpasses.

In the init mode PIMA first applies the RR init bandpass to RR data, computes residual
spectrum RRR(f), then applies RR-bandpass to LL data, multiples visibilities by e2 i (ψ1(t)−ψ2(t))

to compensate the differences in the contribution of the feed-horn rotation angle to RR and LL
visibilities and computes LL polarization residual spectrum RLL. Then Pir,raw = RLL/RRR. Then
raw polarization bandpass is smoothed with Legendre polynomials or B-splines, transformed from
power bandpass to voltage bandpass, and normalized the same way as RR-bandpass.

In the init mode PIMA applies the init polarization bandpass to LL-band residuals and get
accumulative residuals: Pir,acc(f) = RLL(f)/RRR(f)/(P ∗

i (f) ·Pr(f)). These accumulative residuals
are averaged out, as an arithmetic mean for phase part and as a geometric mean for the amplitude
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part. The same voltage normalization is applied for the polarization bandpass as for the RR single
polarization bandpass.

In the fine mode PIMA applies the accum polarization bandpass to LL-band residuals
and get fine residuals. The parameters of the Legendre polynomial and or B-spline expansion
coefficients for phase of the polarization bandpass for all stations, except the reference one and
the parameters of the polynomial or B-spline expansion coefficients for logarithm of the amplitude
polarization bandpass are evaluated with a single least square solution followed by identification
the observations with the largest residual and their removal from the parameter estimation process.

Polarization bandpass allows to compute I-polarization visibilities on the fly before fringe fit-
ting:

V I
12(f) =

1

2

V RR
12(f) +

V LL
12(f) e

2 i (ψ1(t)−ψ2(t))

P ∗

1 (f)

|P1(f)|
· P2(f)

|P2(f)|
B∗

1(f)

|B1(f)|
· B2(f)

|B2(f)|

. (10)

I-polarization visibilities have approximately
√
2 higher SNR than RR or LL visibilities3, which

makes them attractive for detection of weak sources. A general recommendation is always to use
I-polarization combination of dual-polarization observables for fine fringe fitting. However, using
I-polarization requires a correctly computed polarization bandpass.

Polarization bandpass re-normalization is performed differently:

nren(Bi, Br, fl, fh) =

fh
∫

fl

Mi Mr

√

|Bi(f)| · |Br(f)| · |Pi(f)| · |Pr(f)| df

fh
∫

fl

Mi Mr df

, (11)

Keyword SPLT.POLAR visibility for which polarizations should be written in the output file.
When SPLT.POLAR: I PIMA task splt calibrates visibilities for all four polarizations:

V RR
12 =

V RR
12

B∗

1 ·B2

V LL
12 =

V LL
12 e2 i (ψ1−ψ2)

B∗

1 ·B2 · P ∗

1 · P2

V RL
12 =

V RL
12 e−2 i ψ2

B∗

1 ·B2 · P2

V LR
12 =

V LR
12 e2 i ψ1

B∗

1 ·B2 · P ∗

1

(12)

PIMA does not put I combination of RR and LL polarizations in the output; it lets DIFMAP to
generate such combinations. The feed horn rotation angle is applied to left-circular polarization data
to compensate the difference in the sign of the feed horn rotation angle and is not applied to right-
circular polarization data. So by convention, the polarization vector of left-circular polarization

3If amplitudes of RR and LL visibilities are very close to each other than the advantage is exactly
√
2.
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data is aligned with the polarization vector of right circular polarization data and both have the
contribution of the feed horn rotation angle with the sign that corresponds to the right-circular
polarization visibilities.

5 Autocorrelation renormalization

In VLBI data analysis we do not calibrate amplitude directly, but calibrate the noise level measured
from the total power of the received signal that is the sum of the receiver thermal noise, atmospheric
emission, Earth’s surface emission that spills over to the receive, and the cosmological background
radiation. The contribution from the observed source to the total power is usually negligible. If
we apply mask, and usually we do, we cut some spectral channels. In general, the average power
integrated over the used portion of the bandpass differs than the average power integrated over the
entire IF bandwidth, since the IF bandpass is not rectangular. VLBI hardware always measures
system temperature Tsys across the entire IF

4. Therefore, Tsys computed for the total bandwidth is
not equal to the effective Tsys that would have been measured had a portion of the bandwidth be
masked out. Autocorrelation renormalization corrects Tsys for missing channels.

First, autocorrelation is corrected for digital distortion, then and smoothed with spectral chan-
nels that falls to autocorrelation mask down-weighted. The same algorithm for smoothing the
autocorrelation is used as for smoothing the amplitude bandpass. It should be stressed that mask-
ing for autocorrelation renormalization has a different meaning than for fringe fitting or visibility
splitting. In the latter case, masking means replacing the visibility data with zeroes with zero
weights, i.e. effectively excluding them from fringe fitting or from contribution to the averaged
visibility.

In the case of autocorrelation smoothing masking means only exclusion from the input to the
smoothing algorithm. The autocorrelations in the masked channels after smoothing replaced with
values interpolated from the remaining unmasked points. Then the autocorrelation normalization
is computed as

na(i) =

∑

k

Mk(i)Ak(i)

∑

k

Ak(i)
, (13)

where Ak(i) is smoothed autocorrelation for the i-the station and Mk(i) is the fringe mask. NB:

autocorrelation and fringe masks are used for different purposes for autocorrelation renormalization.
The fringe amplitude is divided by

√

na(i)na(i).
The purpose of smoothing is to avoid distortion of autocorrelation renormalization due to

internal RFI generated by the VLBI hardware. These narrow-band signals do not contribute
to the power of the receiver noise that Tsys measures. PIMA silently adds frequencies at spectral
channels of phase calibration to the autocorrelation mask. The peaks in the autocorrelation at
the frequencies of phase calibration is the prominent feature. Since usually spectral resolution is
not sufficient to resolve phase calibration signal, the peaks at phase calibration should be excluded
from summation of power. The peaks due to phase calibration in the autocorrelation spectrum
appear if the phase calibration unit is turned on and their appearance does not depend whether
phase calibration is used in data analysis.

It should be noted that autocorrelation normalization is 1.0 if no fringe mask was applied.

4Some VLBI data terminals measure Tsys across the entire band. At the moment, in such cases PIMA assumes

system temperature at a given IF is equal to the system temperature in the entire band as if it would have measured

independently.
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A Appendix. Plots of normalized cross-correlation and autocor-

relation amplitudes

Normalized cross-correlation amplitude is shown with blue color. Autocorrelation amplitude is
shown in red color. Prominent features: attenuation of the signal at edges of the IF and presence
of phase-calibration signal in autocorrelation plots.

Figure 1: cross-correlation and autocorrelation of VLBA digital bandpass in the rdbe pfb
mode with 32 MHz wide IFs. The thick black line shows the bandpass average value over entire
IF. The green line shows the average value over the representative portion of the IF bandwidth
shown with the shadow area.

Figure 2: cross-correlation and autocorrelation of the CVN bandpass with 32 MHz wide IFs.
The thick black line shows the bandpass average value over entire IF. The green line shows the
average value over the representative portion of the IF bandwidth shown with the shadow area.
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Figure 3: cross-correlation and autocorrelation of the IVS bandpass with 8 MHz wide IFs.

Figure 4: cross-correlation and autocorrelation of the IAA bandpass with 512 MHz wide IFs.
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