
PIMA	User	Guide
Date	of	last	modification:	2025.02.28_13:56:49

This	document	describes	how	to	use	software	PIMA	for	processing	VLBI	visibility	data.	PIMA	performs	data	calibration,	fringe	fitting,	and	exporting	results	of	fringe	fitting	in	the	form	that	can	be
digested	by	VTD/Post-Solve	and	Difmap	software	for	astrometry/geodesy	analysis	and	for	imaging.

Contents:

Introduction
Principles	of	PIMA
Creation	of	a	configuration	file
Loading	the	data
Parsing	log	files
Calibrating	the	data
Automatically	generate	a	phase	calibration	mask	and	report	of	health
Examine	raw	data	and	calibration	information
Running	coarse	fringe	fitting
Computation	of	a	complex	bandpass
Running	fine	fringe	fitting
Export	data	for	astrometry/geodesy	solution
Export	data	for	imaging
Import	of	gain	curves
Flagging	visibilities	with	low	amplitude	at	the	beginning	or	end	of	a	scan.
Running	task	splt	for	splitting	and	exporting	data	for	imaging
Compute	gain	correction
OPAcity	Generation
OPAcity	LOading
Compute	TSys	MOdel
Use	case	of	preparing	the	data	suitable	for	imaging
Automatic	imaging
Re-fringe	the	data	using	results	of	astrometry/geodesy	solution
Data	analysis	pipeline

Fringe	fitting	pipeline
Astrometry/geodesy	pipeline
Imaging	pipeline

Running	the	analysis	pipeline	with	pir.py
pir.py	run	levels
Hints	for	pir.py	use

Processing	dual-band	observations.
Auxiliary	tools

Antenna	log	processing	tool
Tools	for	examining	data	in	FITS-IDI	format
Tools	for	manipulation	with	data	in	FITS	image	format

Introduction

PIMA	is	software	for	processing	the	visibilities	data	from	VLBI	experiments.	It	performs	data	inspection,	data	calibration,	and	fringe	fitting.	PIMA	is	designed	to	process	multi-source	experiments	that
are	common	for	astronomical	surveys	and	geodesy	observations.	PIMA	has	output	interface	with	AIPS,	DIFMAP,	and	VTD/Post-Solve	software.

Principles	of	PIMA

PIMA	processes	visibility	data	in	FITS-IDI	format.	PIMA	does	not	transform	and	does	modify	original	data.	At	the	first	step	PIMA	"loads"	the	data,	i.e.	examines	the	specified	set	of	visibility	data	in	FITS-
IDI	format	and	creates	numerous	internal	indexing	tables	that	are	written	in	disk.	For	performing	all	other	operations	PIMA	uses	these	tables	for	getting	access	to	specific	fields	of	input	FITS-IDI	files.

PIMA	has	a	flexible	command-line	interface	and	it	is	designed	for	a	non-interactive	use.	PIMA	is	ideal	for	being	incorporated	into	scripts	for	shell,	python	or	similar	interpreters.

All	control	parameters	that	are	needed	for	processing	a	given	experiment	are	gathered	in	a	control	file.	PIMA	does	not	support	any	defaults:	all	parameters,	even	those	that	are	not	used	for	a	specific
operation,	are	to	be	explicitly	defined	in	that	file.

PIMA	supports	the	following	general	syntax:

pima	control_file	task	[qualifier	value...]	[keyword:	value...]

where

control_file	is	the	name	of	the	control	file.	The	control	file	contains	a	list	of	pairs	keyword:	value.	Keywords	are	case	insensitive,	values	are	case	sensitive.	The	order	of	keywords	is	irrelevant.	If	a
keyword	is	defined	more	than	once,	the	last	definition	overrides	all	previous	definitions.	The	keyword	defined	in	the	command	line	override	the	keywords	defined	in	the	control	file.

task	is	the	name	of	the	task	performed	from	the	following	list:

acpl	—	autocorrelation	plotting

acta	—	compute	average	autocorrelation	spectrum

bmge	—	generate	bandpass	mask	for	visibility	data

bpas	—	compute	a	complex	bandpass

bplt	—	plot	bandpass

frib	—	baseline	fringe	fitting

frip	—	fringe-fitting	with	phase	referencing

gean	—	load	antenna	calibration	tables

gepm	—	automatically	generate	phase	calibration	mask

load	—	load	the	FITS-IDI	files	and	compute	indexing	tables

mkdb	—	make	output	database

moim	—	import	interferometric	model

mppl	—	plots	of	multiple	tones	of	phase-cal	phases	and	amplitudes

onof	—	determine	on/off	time	range	automatically	by	investing	visibility	data

file:///f1/progs/pima_20250228/doc/pima_user_guide.html#intro
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#prin
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#conf
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#load
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#logs
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#gean
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#gepm
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#exam
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#coarse
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#bpas
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#fine
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#mkdb
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#expo
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#gain
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#onof
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#splt
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#gaco
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#opag
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#opal
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#tsmo
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#splt_uc
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#auto_ima
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#samb
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#ag_pipe
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#fri_pipe
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#astro_pipe
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#ima_pipe
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#pir
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#pir_run_levels
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#pir_use
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#dual
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#aux
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#aux_log
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#aux_idi
file:///f1/progs/pima_20250228/doc/pima_user_guide.html#aux_images

opag	—	fetch	slant	path	delay,	atmospheric	opacity	and	atmosphere	brightness	temperature	on	an	az/el	grid

opal	—	load	slant	path	delay,	atmospheric	opacity	and	atmosphere	brightness	temperature

tsmo	—	to	compute	the	model	for	Tsys	using	decomposition	of	Tsys	in	the	product	of	time-dependent	Tsys	in	the	zenith	direction	and	time-independent	Tsys	as	a	function	of	elevation,	remove
outliers	with	respect	to	that	model,	remove	outliers	in	the	ratios	of	Tsys	with	respect	to	different	IFs	and	created	arrays	of	so-called	modeled	and	cleaned	Tsys	for	all	epochs,	including	the
epochs	with	missing	or	flagged	out	measured	Tsys.	atmospheric	opacity	and	atmosphere	brightness	temperature

pcpl	—	make	a	plot	of	phase	calibration	signal

pdpl	—	make	a	plot	of	the	phase	calibration	signal	at	the	LL	polarization	with	respect	to	the	phase	calibration	signal	at	the	RR	polarization.

pmge	—	generate	bandpass	mask	for	phase-cal	data

pplt	—	generate	polarization	bandpass	plot

prga	—	print	gain	information

splt	—	split	the	data	into	sources	and	write	output	FITS-files

tspl	—	plotting	the	system	temperature

tst1	—	reserved	for	tests

upgr	—	upgrade	control	file

qualifier	value	—	additional	parameters	that	are	supplied	to	task.	They	are	specified	as	a	pair	qualifier	and	its	value.	Some	tasks	require	more	than	one	qualifier.	Many	tasks	do	not	require
qualifiers.	The	order	of	qualifiers	is	irrelevant.

keyword	value	—	additional	pairs	keyword:	value.	These	pairs	override	definitions	from	the	control	file.	These	pairs	can	be	viewed	as	amendments	of	the	control	file	applied	on	the	fly.	If	the
command	line	has	more	than	one	definition	of	the	same	keyword,	the	last	definition	takes	precedence.	If	the	value	of	any	keyword	is	omitted,	PIMA	will	print	error	message.

PIMA	supports	a	number	of	optional	kludge	parameters	that	alter	normal	processing	in	a	form	of	keyword:	value.	The	have	a	prefix	PIMAVAR_.	They	can	be	either	defined	in	the	control	file	or	put	in	the
command	line,	or	defined	as	environment	variables.

Frontend	wrappers

PIMA	provides	several	frontend	wrappers.	They	accept	arguments,	perform	some	operations	and	finally	call	PIMA.	A	user	does	not	have	to	use	wrappers.	They	are	provided	just	for	convenience.
Though,	using	wrappers	sets	some	restrictions	on	how	to	name	PIMA	related	files.	If	you	are	going	to	use	wrappers	than	the	file	name	are	supposed	to	obey	the	following	convention:

1.	 Files	related	to	a	certain	experiment	reside	in	subdirectory	VVVVV,	where	VVVVV	is	the	root	directory	of	vlbi	experiments	specified	by	--pima-exp-dir	during	configuration.

2.	 Control	file	has	name	VVVVV/EEE/EEE_B_pima.cnt	where	B	is	band	name	in	lower	case.	For	instance,	the	control	file	for	band	C	(4.3	GHz)	for	experiment	bp192c0	is	sought	in
/vlbi/bp192c0/bp192c0_c_pima.cnt,	provided	PIMA	was	configured	with	--pima-exp-dir=/vlbi.

3.	 Wrappers	will	create	the	following	files
VVVVV/EEE/EEE_load.log	–	log	of	task	load	the	database.

VVVVV/EEE/EEE_B_nobps.fri	–	results	of	fringe	fitting	in	the	coarse	mode.

VVVVV/EEE/EEE_B_coarse.log	–	log	of	fringe	fitting	in	the	coarse	mode.

VVVVV/EEE/EEE_B_fine.log	–	log	of	fringe	fitting	in	the	fine	mode.

VVVVV/EEE/EEE_mkdb.log	–	log	of	generation	a	database	in	GVF	format.

VVVVV/EEE/EEE_splt.log	–	log	of	task	splt.

VVVVV/EEE/EEE_B_gain.log	–	listing	with	used	antenna	gains.

VVVVV/EEE/EEE_B_map.log	–	log	of	automatic	data	imaging.

Several	wrappers	are	provided.	Among	them	are

pu.py	–	Fringe	fitting.	Includes	tasks	data	loading,	parse	log	files,	coarse	fringe	fitting,	bandpass	computation,	fine	fringe	fitting,	data	calibration	and	slitting,	generation	of	the	output	database	in	GVF
format.

pt.py	–	Trial	fringe	fitting.	Runs	a	trial	fringe	fitting	procedure	for	a	given	observation.

pr.py	–	Resolving	sub-ambiguities.	Parses	the	listing	of	the	VTD/Post-Solve	run,	generates	control	file	for	re-fringing	with	a	narrow	search	window,	executes	that	control	file,	and	updates	the
database.

Graphic	interface

PIMA	uses	graphics	interface	DiaGI	based	on	PGPLOT	library.	DiaGI	displays	plot	into	X-window.	It	allows	to	resize	plot,	change	plot	appearance,	inquire	a	point,	make	a	hardcopy,	etc.	Refer	to	DiaGI
documentation	for	details.	It	is	assumed	in	this	manual	a	reader	is	already	familiar	with	DiaGI	interface.	DiaGI	documentation	can	be	found	here:	DiaGI	doc-1,	Diagi	doc-2,	and	Diagi	doc-3.

Minimalistic	workflow

The	workflow	of	the	minimalistic,	simplified	analysis:

load	—	parses	and	loads	the	data.	This	is	always	the	first	operation.	A	user	is	supposed	to	prepare	control	file	that	defines	the	name	of	visibility	file(s)	in	FITS-IDI,	station	catalogue,	source	catalogue,
control	file	for	VTD,	experiment	description	file,	and	parameters	that	control	further	analysis.	Results	of	parsing	the	visibility	data	are	written	in	a	binary	file.	For	all	tasks,	except	load,	PIMA	reads
that	file	immediately	after	start.

frib	—	performs	coarse	fringe	search	without	bandpass	calibration	and	masking	bad	data.	Some	results	of	this	fringe	search	will	be	used	for	computation	of	bandpass	calibration	and	automatic
flagging.	Usually,	no	oversampling	is	performed	during	coarse	fringe	search.

bpas	—	computes	the	complex	bandpass	calibration	and	complex	polarization	band-pass	(for	dual-band	data)	using	results	of	the	coarse	fringe	search.

frib	—	performs	fine	fringe	search	with	bandpass	calibration	applied.	Usually,	the	data	are	over-sampled	with	a	factor	of	4.

mkdb	or	splt	—	generate	the	final	product	of	PIMA	using	results	of	fringe	fitting:
the	database	with	total	group	delays,	phase	delay	rates	and	related	parameters	for	consecutive	astrometry/geodesy	data	analysis;

visibilities	coherently	averaged	over	frequency	and	specified	time	intervals,	with	averaged	visibilities	split	into	files,	one	file	per	source,	in	a	form	ready	for	imaging	analysis	with	DIFMAP.

Creation	of	a	configuration	file

Supported	keywords	are	described	in	pima_keywords.html	document.	Control	file	contains	lines	with	pairs	keyword:	value.	Lines	that	start	with	#	are	considered	as	comments.	The	first	and	the	last	line
of	a	control	file	is	its	label

http://astrogeo.org/mk5/help/diagi_1.hlp
http://astrogeo.org/mk5/help/diagi_2.hlp
http://astrogeo.org/mk5/help/diagi_3.hlp
file:///f1/progs/pima_20250228/doc/pima_keywords.html

#	PIMA_CONTROL	file.		Format	Version	of	2020.04.19

Keyword	names	are	in	upper	case	and	are	terminated	by	column.	Values	are	case	sensitive.	If	the	same	keyword	is	defined	more	than	once,	the	last	definition	takes	preference.	The	pair	keyword:	value
defined	in	the	control	file	are	processed	as	if	they	appended	to	the	end	of	the	control	file.	There	are	two	exceptions:	UV_FITS	and	INTMOD_FILE.	More	than	these	keywords	are	allowed	for	a	case	when
several	input	files	should	be	defined.

Some	values	in	PIMA	control	file	are	file	names.	Although	you	can	define	relative	file	names,	defining	absolute	file	names	is	encouraged.

A	user	rarely	creates	a	configuration	file	from	scratches.	Usually,	a	control	file	from	a	similar	experiment	is	copied	to	a	new	name	and	a	user	edits	it.	A	user	should	check	carefully	every	keyword.	The
following	keywords	are	the	most	commonly	need	to	change:

SESS_CODE	—	session	code.	Usually,	this	is	the	experiment	code	defined	in	the	FITS-file.	All	names	of	output	files	that	PIMA	generates	will	contain	this	code	inside.	Therefore,	this	code	should	be
unique	for	a	given	experiment.	You	can	have	several	trial	control	files	for	the	same	experiment.	If	you	want	to	distinguish	output	files	generated	by	this	trial	control	files,	you	may	use	different
SESS_CODE.	NB:	if	you	change	SESS_CODE,	you	must	re-run	task	load.

UV_FITS	—	name	of	FITS-files.	Obviously,	you	need	to	define	only	these	FITS-files	that	you	want	to	process.	NB:	if	you	change	the	number	of	FITS-files	or	rename	them,	you	must	re-run	task	load.	If
you	moved	FITS-files	to	another	directory	without	change	of	the	base	name	and	extension,	you	do	not	have	re-run	task	load.

There	may	be	more	than	one	FITS-IDI	file	in	the	processed	dataset.	In	that	case,	more	than	one	lines	with	keyword	UV_FITS	should	appear	in	the	control	file.	FITS-IDI	files	should	appear	in	the
chronological	order.

PIMA	requires	that	the	number	of	spectral	channels	within	each	intermediate	frequency	(IF)	be	the	same	for	each	FITS-IDI	file.	If	your	experiment	has	different	spectral	resolution,	PIMA	cannot
process	it	as	one	experiment.	In	that	case	you	need	to	write	more	than	one	control	file	with	different	SESS_CODE	keyword	and	process	then	separately.

SOU_NAMES	—	filename	with	source	catalogue.	This	source	catalogue	is	used	for	several	purposes:

defining	B1950	and	J2000	source	names	for	observed	sources.	FITS-IDI	contains	only	one	name	for	observed	sources.

renaming	a	source.	A	source	catalogue	has	four	columns:	IVS	name,	B1950	IAU	name,	J2000	IAU	name	and	alternative	name.	The	alternative	name	column	allows	to	match	a	non-standard
name.

defining	new	coordinates	of	a	source	that	are	different	than	those	used	for	correlation.	Strictly	speaking,	position	of	a	"source"	used	for	correlation	is	a	position	of	the	center	of	the	field.	A
source	may	be	off	the	center	of	the	field	of	view.	If	the	source	is	far	away	from	the	center	of	the	field,	the	non-liner	term	of	phase	as	a	function	of	time	may	appear	significant.	PIMA	has	an
option	that	allows	to	compensate	this	term,	but	it	needs	to	know	the	position	of	the	source,	not	the	center	of	the	field.

there	may	be	more	than	one	source	the	field	of	view.	PIMA	allows	to	"split	the	source":	to	define	more	than	one	source	that	corresponds	to	the	same	field	of	view.	In	order	to	split	the	source,
put	@	in	column	32	of	adjacent	rows	of	the	catalogues.	Adjacent	rows	should	have	the	same	alternative	name	defined	in	column	33:42.	You	may	split	the	field	of	view	in	more	than	one	source.
NB:	if	you	split	several	different	fields	of	view,	they	should	not	occupy	adjacent	rows.	Put	comment	line	between	different	fields	of	view	that	are	spit	into	several	sources.	Internally,	PIMA
associate	with	each	source	a	set	of	entries	of	the	FITS-IDI	file	with	visibilities.

Sometimes	it	is	desirable	to	swap	source	names	of	two	sources.	Character	^	at	the	32th	column	tells	PIMA	to	change	name	of	the	source	specified	in	columns	33:42	to	the	name	specified	in
columns	1:8.	It	will	use	the	a	priori	positions	specified	for	that	sources	in	columns	46:73.	Character	^	at	the	32th	column	is	used	when	we	want	just	to	change	source	name.	Using	character	^	at
the	32th	column	we	can	even	swap	source	names.	If	the	field	in	the	column	32	is	blank	and	the	field	in	columns	33:42	contains	a	source	name,	PIMA	will	search	a	record	with	the	IVS	name
equal	to	the	string	specified	in	columns	33:40	and	it	will	use	the	a	priori	for	that	record.	Blank	at	the	32th	column	is	used	when	we	want	associated	source	observed	under	name	A	to	a	known
source	with	name	B	with	its	a	priori	positions.

The	differences	between	these	to	cases:

when	character	^	is	used,	the	a	priori	specified	at	the	same	line	are	used,	while	if	the	32th	columns	is	blank,	a	priori	for	another	matching	record	is	used.	Since	PIMA	applies	phase
correction	due	to	difference	between	a	priori	position	specified	in	the	source	catalogue	and	the	a	priori	used	by	the	correlator,	the	result	will	be	different.

when	character	^	is	used,	source	name	swapping	is	allowed,	but	name	swapping	is	impossible	when	blank	is	used	in	field	32.

Keep	in	mind	that	each	source	should	be	defined	in	two	catalogues:	one	catalogue	used	for	association	with	the	center	of	fields	defined	in	FITS-IDI	files.	Another	catalogue	is	used	for	computation	of
theoretical	path	delay.	That	catalogue	is	defined	on	VTD	control	file	used	by	PIMA.	The	primary	source	name	is	the	"IVS	name"	which	is	B1950	name	with	same	exception.	Any	observed	source	(NB:
a	source,	not	the	field!)	should	have	a	record	in	the	source	catalogue	defined	in	the	VTD	control	file	that	is	associated	with	the	PIMA	source	catalogue	via	the	field	IVS	source	name.	Internally,	PIMA
will	use	IVS	source	names,	but	it	also	keeps	the	original	name	of	the	center	of	the	field.

If	during	task	load	PIMA	cannot	find	a	source	name(s)	in	the	input	catalogue,	it	issues	an	error	message	that	contains	names	and	coordinates	of	all	missing	sources	at	the	beginning	of	the	task.	If
PIMA	cannot	find	a	source	name	in	VTD	source	catalogues,	it	issues	an	error	message	that	contains	names	and	coordinates	of	all	missing	sources	at	the	end	of	the	task.

STA_NAMES	—	filename	with	station	catalogue.	Each	station	that	participated	in	the	processed	VLBI	experiment	should	have	a	record	in	the	station	catalogue.	The	station	catalogue	has	several
columns.	The	first	column	is	the	name	of	the	station	used	by	the	correlator.	It	may	use	up	to	8	characters.	The	second	column	contains	a	standardized	IVS	8-character	long	station	name.	The	main
purpose	of	this	station	name	is	to	match	the	station	name	used	by	the	correlator	and	the	IVS	name.	Internally,	PIMA	will	use	the	IVS	station	name,	but	also	keeps	the	original	name.

EXPER_DIR	—	name	of	the	scratch	directory	where	PIMA	will	write	some	results,	including	intermediate	files.

MIN_SCAN_LEN,	MAX_SCAN_LEN,	MAX_SCAN_GAP	—	these	parameters	control	the	algorithm	for	splitting	the	dataset	into	scan.	Depending	the	goals	of	your	experiment,	you	may	adjust	the
strategy	for	splitting	the	data	into	scans.

BANDPASS_FILE,	BANDPASS_MASK_FILE,	PCAL_MASK_FILE,	POLARCAL_FILE,	FRINGE_FILE,	FRIRES_FILE	—	obviously,	these	files	are	specific	for	a	given	experiment	and	should	have	unique
names.	It	is	a	good	practice	to	keep	all	these	files	in	the	same	experiment	specific	directory.

MKDB.OUTPUT_NAME	—	defines	either	suffix	if	MKDB.OUTPUT_TYPE:	GVF	or	the	file	name	if	MKDB.OUTPUT_TYPE:	TEXT.	The	name	should	be	experiment	specific.	If	more	than	one	experiment
has	the	nominal	start	time	at	the	same	day,	the	suffix	should	be	unique.	Please	check	the	suffix	carefully.	Otherwise,	PIMA	may	override	existing	database	for	different	experiment!

EPHEMERIDES_FILE	—	if	you	process	VLBI	experiment	with	RadioAstron,	you	need	to	specify	the	relevant	ephemeride	file	that	covers	the	time	interval	of	the	experiment.

MKDB.DESC_FILE	—	this	file	defines	auxiliary	information	specific	for	this	experiment.	You	need	to	copy	the	description	file	for	similar	experiment	to	another	name	and	edit	accordingly.

Loading	the	data

Task	data	loading	is	the	first	task.	PIMA	parses	the	control	file,	finds	the	data	with	visibilities	in	FITS-IDI	format,	and	reads	them.	It	gathers	information	about	station	names,	sources	names,	frequencies,	a
priori	models,	system	temperature,	gain,	weather	information,	phase	calibration,	cable	calibration,	etc.	It	reads	all	cross-correlations	and	auto-correlations,	associates	them,	and	checks	for	their
consistencies.	Then	PIMA	splits	the	data	into	scans	and	observations.	It	creates	scan	tables,	observation	tables	and	associates	observations	with	indices	of	visibilities.	All	tables	are	written	into	a	binary
file	SSSSS/EEE.pim,	where	SSSSS	is	the	scratch	directory	specified	in	the	keyword	EXPER_DIR	and	EEE	is	the	experiment	name	specified	in	the	keyword	SESS_CODE	of	the	PIMA	control	file.	Data
loading	takes	from	20	seconds	for	small	experiments	to	2–4	hours	for	experiments	with	visibility	files	of	terabyte	size.	All	other	PIMA	operations	will	read	file	SSSSS/EEE.pim	and	use	indexing	tables.
Unlike	to	AIPS	or	CASA,	PIMA	does	not	rewrite	input	visibility	data	in	its	own	format.	Instead	of	it,	it	creates	indexing	tables	and	uses	this	tables	when	it	needs	to	collect	visibilities	for	processing	a	given
observation.	The	advantage	of	this	approach	is	that	no	intermediate	files	is	created.	The	disadvantage	is	that	reading	of	visibility	data	may	become	inefficient	when	if	the	input	data	file	that	reside	on
magnetic	hard-drive	are	larger	than	than	the	amount	of	available	operative	memory	due	to	limitations	related	to	a	design	of	FITS-IDI	data.	PIMA	does	not	need	input	information	about	learning	how	the
data	are	split	into	scans:	it	does	it	itself.	The	advantage	of	this	approach	is	that	PIMA	will	process	the	data	even	if	any	auxiliary	information	is	lost.	The	disadvantage	of	this	approach	is	that	PIMA	can
split	the	data	into	scans	not	the	same	way	as	an	observer	designed	the	experiment.

The	first	operation	of	task	load	is	parsing	control	file.	VTD	control	file	specified	in	PIMA	control	file	is	also	parsed.	Finally,	the	experiment	description	file	specified	in	the	keyword	MKDB.DESC_FILE	is
parsed.	Any	errors,	such	as	syntax	errors	or	files	that	do	not	exist	are	reported.	PIMA	will	stop	and	issue	an	error	message	in	a	case	of	errors.

In	the	next	step	PIMA	will	check	every	source	name	first	in	the	file	specified	in	keyword	SOU_NAMES,	then	in	catalogue	files	specified	in	VTD	control	file.	If	it	finds	at	least	one	source	not	in	the
catalogue,	PIMA	will	issue	the	error	message	and	print	the	list	of	missing	source	names	and	their	coordinates	extracted	from	the	FITS	file.

Then	PIMA	will	check	every	station	name	first	in	the	file	specified	in	keyword	STA_NAMES,	then	in	catalogue	files	specified	in	VTD	control	file.	If	it	finds	at	least	one	station	not	in	the	catalogue,	PIMA
will	issue	the	error	message	and	print	the	list	of	missing	station	names	and	their	coordinates	extracted	from	the	FITS	file.

Then	PIMA	check	frequencies	in	each	files	and	creates	the	global	frequency	table	for	the	entire	experiment.	It	converts	low	side	band	intermediate	frequencies	tables	(LSB	IF)	into	upper	side	band	IFs	by
re-ordering	frequencies	of	the	channels	within	each	IF	for	them	to	following	in	the	ascending	order.	It	merges	or	combines	frequency	groups	if	requested.	Finally,	it	tables	of	cross	indices	from	the
original	frequency	tables	frequency	groups	to	the	global	frequency	table,	frequency	groups	and	vice	versus.

Next	step	is	to	read	all	visibility	data.	Visibility	data	are	sorted,	cross-correlation	data	are	linked	to	autocorrelation	data,	and	tables	of	time	indices,	cross-correlation	indices	and	auto-correlation	indices
are	created.	PIMA	checks	for	organ	visibilities:	cross-correlation	visibilities	without	autocorrelation	and	auto-correlation	data	within	matching	cross-correlation	data.	These	visibilities	are	added	to	the
list	of	"bad	data".

Then	PIMA	splits	the	data	into	scans.	By	that	time	the	data	are	chronologically	sorted.	There	are	three	parameters	in	the	PIMA	control	file	that	controls	the	process	of	data	splitting:	MIN_SCAN_LEN,
MAX_SCAN_LEN,	and	MAX_SCAN_GAP.	PIMA	sets	a	preliminary	scan	boundary	when	a	source	is	changed.	If	it	does	not	find	valid	visibilities	for	MAX_SCAN_GAP	seconds	after	the	last	valid	visibility	of
the	previous	source,	it	sets	the	end	of	scan	of	the	previous	source.	If	duration	of	the	time	from	the	first	valid	visibility	of	a	given	scan	is	longer	than	MAX_SCAN_LEN,	a	border	of	a	scan	is	set,	and	a	new
scan	starts.	That	means	that	a	scan	cannot	be	longer	than	MAX_SCAN_LEN	seconds	and	it	cannot	have	a	gap	longer	than	MAX_SCAN_GAP.	At	the	same	time	scans	of	different	sources	may	overlap,	i.e	as
scan	B	may	have	start	and	stop	time	within	the	interval	of	start	and	stop	time	of	the	scan	A.	Scans	shorter	than	MIN_SCAN_LEN	seconds	are	eliminated	and	the	visibilities	within	such	short	scans	are
marked	as	bad.

The	choice	of	MIN_SCAN_LEN,	MAX_SCAN_LEN,	and	MAX_SCAN_GAP	is	determined	by	scheduling	goals	and	the	correlator	setup.	Usually	MIN_SCAN_LEN	is	set	to	have	at	least	three	accumulation
periods,	otherwise	fringe	fitting	process	may	fail.	For	non-phase	referencing	experiment	MAX_SCAN_LEN	can	be	set	to	the	scan	length	set	by	the	schedule.	Experiments	at	22	GHz	and	higher
MAX_SCAN_LEN	can	be	set	shorter	to	be	close	to	the	coherence	time.	MAX_SCAN_GAP	can	be	set	to	1/2	of	the	scan	length	to	prevent	scan	split	in	a	case	of	data	loss	within	a	scan.	For	scan-referencing
observations	MAX_SCAN_LEN	is	set	to	the	cycle	duration	and	MAX_SCAN_GAP	is	set	to	90%	of	MAX_SCAN_LEN.	It	should	be	noted	that	PIMA	allows	to	use	a	portion	of	a	scan	in	data	analysis,	but	it
cannot	unite	two	scans.	Parameter	SCAN_LEN_USED	and	SCAN_LEN_SKIP	allows	to	set	up	continuous	portion	of	a	scan	for	fringe	fitting	and	split	after	load	task.	But	PIMA	cannot	increase	scan	length
after	task	load	is	done.	If	a	user	needs	to	change	scan	allocation	or	increase	scan	length,	task	load	should	be	re-run.	NB:	if	a	new	run	of	task	load	changes	the	total	number	of	observations,	fringe	fitting
should	be	re-run,	since	the	stale	fringe	results	have	different	scan	and	observation	indices.

After	PIMA	split	the	data	into	scans,	it	checks	all	cross-	and	auto-	visibility	data	whether	they	are	claimed	by	scans.	All	visibilities	not	claimed	by	scans	are	marked	as	bad.

If	PIMA	finds	at	least	one	bad	visibility,	PIMA	stops	withe	an	error	message.	Since	getting	bad	visibilities	is	rather	a	common	situation,	PIMA	has	a	mechanism	to	accommodate	them.	PIMA	control	file
supports	keyword	UV_EXCLUDE_FILE	that	defines	a	file	with	indices	of	visibilities,	either	cross	or	auto,	that	are	to	be	excluded	at	the	very	beginning.	These	visibilities	are	excluded	from	analysis,	and
PIMA	cannot	mark	them	bad	because	it	does	not	see	them.	PIMA	supports	a	special	value	of	parameter	UV_EXCLUDE_FILE:	AUTO.	If	value	AUTO	is	specified,	than	when	PIMA	finds	bad	points,	it
writes	visibility	indices	in	the	so-called	bad	visibility	file	at	SSSSS/EEE_uv.exc	file,	where	SSSSSS	is	EXPER_DIR	and	EEE	is	SESS_CODE.	If	that	file	already	exists,	PIMA	appends	new	visibilities	to	that
file.	When	UV_EXCLUDE_FILE:	AUTO,	tasks	load	is	executed	several	times.	The	first	time	PIMA	finds	bad	points,	puts	them	in	the	SSSSS/EEE_uv.exc	file	and	stops	with	the	exit	code	23.	The	second
time	the	bad	points	in	SSSSS/EEE_uv.exc	are	read	and	excluded	from	the	subsequent	analysis.	Usually	two	runs	are	sufficient.	Sometimes	the	3rd	and	4th	is	required.	Wrapper	pf.py	executes	the	2nd,
3rd	and	4th	run	automatically.	NB:	pf.pypurges	SSSSS/EEE_uv.exc	file	if	it	exists.

After	splitting	the	data	into	scans,	PIMA	reads	and	parses	phase	calibration,	system	temperature,	weather	information,	interferometric	model	and	interferometric	model	components.	Any	these
parameters	may	be	missing	in	the	FITS-IDI	file.	In	such	cases	PIMA	issues	a	warning,	but	proceeds.

If	PCAL:	NO	is	specified	in	the	control	file,	PIMA	will	skip	phase	calibration	information	present	in	the	FITS-IDI	file(s).	Keep	in	mind,	if	PCAL:	NO	was	specified	during	loading,	PIMA	cannot	re-enable
phase	calibration	later	within	running	task	load	again.	If	phase	calibration	was	loaded	and	cane	be	disabled	for	entire	experiment	or	for	the	specified	station(s)	and	re-enabled	again.	If	phase	calibration
is	not	available	for	some	scans	at	some	stations,	such	observations	are	flagged	as	bad	and	are	skipped	for	fringe	fitting	and	other	operations,	unless	phase	ca	libation	is	disabled	for	the	entire	experiment
by	specifying	PCAL:	NO	or	by	disabling	pcal	at	both	stations	of	the	baseline	of	that	observation.	It	should	be	noted	that	bandpass	and	fringe	results	will	be	different	whether	phase	calibration	was	used	or
not.	Therefore,	if	phase	calibration	status	was	changed,	bandpass	should	be	re-generated	and	fringe	fitting	re-done.

Correlator	organzies	data	by	spectral	channels,	intermediate	frequencies	(IFs)	and	frequency	groups.	Strictly	speaking,	fringe	fitting	can	be	done	only	within	one	frequency	group	PIMA	has	two	ways	to
circumvent	this	resutriction.

If	UV	data	from	several	frequency	groups	have	the	same	time	tag,	such	freuqnecy	groups	are	called	overlapping.	Overlapping	frequency	groups	can	be	merged	to	a	new	virtual	group.	When	task	load	is
executed	with	FRQ_GRP:	m:n,	where	m	and	n	is	a	range	of	the	frequency	groups,	a	new	virtual	groups	created	that	merges	IFs	of	frequency	grops	from	m	to	n.	The	number	of	IFs	of	the	new	virtual	group	is
(m-n+1)*Num_IF.	The	new	virtual	group	has	index	1	and	has	(m-n+1)*Num_IF	IFs,	where	Num_IF	is	the	number	of	IFs	in	orginial	groups.	After	loading	either	FRQ_GRP:	m:n	or	FRQ_GRP:	1	forms	can	be
specified	to	us	the	merged	group.	Other	forms	of	FRQ_GRP,	such	as	FRQ_GRP:	2	are	not	accepted.

If	UV	data	from	several	frequency	groups	have	the	different	time	tag,	such	groups	are	not	overlapping.	A	common	usual	case:	change	of	the	reciever	or	the	backend	setup	while	the	antennas	are	on
source.	The	non-overlapping	groups	can	be	combined	into	a	new	virtial	group	by	involiing	task	load	with	FRQ_GRP:	m-n,	where	m	and	n	is	a	range	of	the	frequency	groups.	The	number	of	IFs	of	the	new
virtual	group	is	(m-n+1)*Num_IF.	The	new	virtual	group	has	index	g+1,	where	g	and	has	(m-n+1)*Num_IF	IFs,	where	Num_IF	is	the	number	of	IFs	in	orginial	groups.	After	loading	data,	the	virtial	group
can	be	accessed	as	FRQ_GRP:	g+1.	Other	forms	of	FRQ_GRP,	such	as	FRQ_GRP:	1	are	not	accepted.

It	is	important	to	note	that	virtial	frequency	group	are	created	when	running	task	load.	Just	calling	PIMA	with	FRQ_GRP:	m:n	or	FRQ_GRP:	m-n	after	loading	will	cause	an	error	message,	unless	the
virtial	frequency	group	has	been	created	by	task	load.

By	2016.01.01	only	VLBA	put	model	and	all	calibration	information	into	the	FITS-IDI	data.	Lack	of	calibration	information	does	not	prevent	PIMA	to	run	fringe	fitting	by	may	prevent	further	tasks.	For
instance,	task	splt	cannot	run	if	no	Tsys	and/or	antenna	gains	is	available.	Task	mkdb	cannot	run	if	the	interferometric	model	is	not	available.	VLBA	hardware	correlator	and	DiFX	version	2.0	and	newer
puts	phase	calibration	information	into	FITS-IDI.	Other	correlators	do	not	to	do	it.	Missing	weather	information,	Tsys	can	be	loaded	by	PIMA	task	gean	using	results	of	parsing	log-files.	Missing	antenna
gains	can	be	loaded	by	PIMA	task	gean	from	external	gain	files.	Missing	interferometric	for	VERA,	SFXC,	and	KJCC	correlators	can	be	loaded	by	task	moim	from	external	model	files	in	native	format	that
were	used	by	the	correlator.

Example:	processing	an	experiment	correlated	with	SFXC	(JIVE	correlator).	A	user	need	collect	all	delay	files	and	one	clock	files.	The	delay	files	and	the	clock	file	need	be	put	either	in	a	separate	directory
that	keeps	the	interferometric	data	for	this	specific	experiment	or	a	tree	of	sub-directories.	The	delay	files	are	in	a	binary	format	SFXC	supports	two	formats	pre-2020	and	post-2020.	PIMA	recognises
them	automatically.	INTMOD_FILE:	keyword	specifies	a	file	or	a	directory	with	delays.	More	than	one	keyword	INTMOD_FILE:	can	be	specified.	PIMA	will	find	all	files	with	extension	".del",	extract	the
apriori	interferometric	model,	sort	it	and	puts	in	the	internal	data	structure.	It	will	also	search	for	a	file	with	extension	".clk"	with	the	clock	model.

Then	the	PIMA	control	file	should	have	these	definitinos:	INTMOD_FILE:	directory_name_with_del_files
INTMOD_TYPE:	SFXC

NB:	If	the	data	are	re-loaded,	task	splt	should	be	repeated.

SFXC	Format	description	of	2024.05.13:

SFXC	post-2020	inteferometric	model	format	supports	adding	extra	
rows	of	delay	model	before	and	after	each	scans.	This	makes	some	
things	easier	in	the	correlator.

How	many	extra	rows	there	are	is	controlled	by	a	variable	called
n_padding,	the	value	of	which	is	stored	in	the	delay	file	header.
So	there	are	n_padding	extra	rows	before	and	after	each	scan.

Also	new	in	the	header	is	a	version	number.		The	currently	values	are
version_number	=	1,	and	n_padding	=1.

The	scan	name	is	repeated	for	every	source,	even	if	there	are	multiple	
sources	in	a	scan.

Below	is	the	delay	file	format	in	pseudo	code.	Between	the	square
brackets	is	the	data	type	and	the	number	of	elements.

				[int32_t]	#	header	size	excluding	this	variable
	[int32_t]	#	version	number
						[int32_t]	#	number	of	extra	rows	before	and	after	each	scan
			[(header_size	-	8)	*	char]
*	For	each	scan	in	the	experiment
				*	For	each	source	in	the	scan

							[char	*	81]							#	Null	terminated	scan	name
							[char	*	81]					#	Null	terminated	source	name
							[int32_t]															#	The	modified	julian	day	at	the
																																						start	of	the	scan
						*	The	model	values	sampled	once	per	second
						time		U		V			W			delay			phase			amplitude	[double]
						0	0	0	0	0	0	0	[double]			#	The	end	of	a	scan	(for	each	source)
																																	is	marked	with	a	row	of	zeros

Here	time	is	the	number	of	seconds	since	midnight	on	the	day	the	scan
starts.	U,	V,	W	are	in	meters,	and	delay	is	in	seconds.

Parsing	log	files

This	is	the	most	frustrating	part	of	data	analysis.	If	you	have	data	from	VLBA,	you	do	not	need	to	run	parsing	log	files.	Parsing	log	files	from	the	KVN	and	VERA	is	very	straightforward.	Unfortunately,
parsing	log	files	generated	by	the	Field	System	developed	in	the	Goddard	Space	Flight	Center	often	fails,	because	the	format	of	field	system	log	file	is	changed	without	notice,	and	the	developer	who
maintains	the	field	system	refuses	to	cooperate.

The	preferable	way	to	parse	log	files	generatd	by	the	IVS	Field	System	program	is	to	use	log2ant	program	maintained	by	Sergei	Bolotin.	Syntax	of	log2ant	program	for	parsing	log-files:

		UsageL	log2ant	-t	dat	-t	met	-t	tsys	-t	sefd	-t	phc	-t	fmt	-t	cbl	-u	-o	{output_file}	{input_file}

where	input	file	contains	file	with	raw	telemetry	(Level	0)	and	output	file	contains	the	output	of	parsing	(Level	1)	in	the	standardized	ANTCAL	format.	The	value	of	this	qualifier	is	the	file	name.	PIMA
can	directly	import	log	file	in	VLBA	format	or	in	the	PIMA	ANTAB	format,	or	in	ANTCAL	format.	Non-VLBA	logs	are	parsed	by	program	log_antab	and	transformed	either	to	ANTAL	format	or	to	PIMA
ANTAB	format.	Programs	log2ant	or	log_to_antab	extract	system	temperature,	if	present,	nominal	on-off	time	tags,	cable	calibration,	and	meteorological	information.	Modern	VLBI	analysis	does	not	use
in-situ	meteorological	information,	and	uses	instead	of	that	the	output	of	numerical	weather	model.	The	current	version	of	PIMA	does	not	use	nominal	on-off	time	tags	from	log	files,	since	this
information	is	already	used	by	the	correlator.	PIMA	can	compute	on-off	flags	from	data	actual	time	tags	when	the	antenna	was	on	source.	The	use	of	cable	calibration	in	analysis	is	at	a	user	discretion
and	rarely	improves	the	fit,	but	sometimes	significantly	degrades	it.	But	the	use	of	system	temperature	is	critical	for	imaging.	When	PIMA	produces	the	calibrated	averaged	visibilities,	it	discards
observations	without	system	temperature.

Syntax	of	log_to_antab	program	for	parsing	log-files:

					Usage:		{mode}	{log_file}	{antab_file}	[year]

where

MODE	=	1	—	for	IVS	log-files	after	2008.

MODE	=	2	—	for	IVS	log-files	in	approximately	1999–2002.

MODE	=	3	—	for	IVS	log-files	in	approximately	1996–1996.

MODE	=	4	—	for	IVS	log-files	in	approximately	1996–1999.

MODE	=	5	—	DBBC	log	file	with	USB/LSB	pairs	of	BBCs.

MODE	=	11	—	for	KVN	log-files

The	main	difficulty	is	in	extraction	system	temperature	from	field	system	logs.	The	parsing	software	needs	to	identify	Tsys	record,	extract	the	array	of	Tsys	and	match	that	array	with	sky	frequencies.	It
needs	to	determine	intermediate	frequency	with	respect	to	the	frequency	of	the	local	oscillator,	to	determine	the	frequency	of	the	local	oscillator,	match	them,	find	tsys	record,	determine	to	which	BBC	a
field	in	tsys	record	belong	and	match	the	field.

NB:	An	analyst	should	always	examine	the	output	of	log_antab	program.	Typical	failure:	log_to_antab	fails	to	determine	sky	frequencies.	Possible	reasons:	a	log	file	may	have	a	portion	at	the	beginning	or
at	the	end	that	is	related	to	another	experiment,	a	new	change	of	log	format.	In	the	first	case,	editing	a	log	file	solves	the	problem.	In	the	latter	case	you	need	to	patch	log_to_antab.	Please	try	not	to	break
its	ability	to	parse	other	log	files.	If	everything	else	fails,	you	can	either	develop	your	own	parser	or	to	parse	a	log	file	by	hand.	Keep	in	mind	that	some	station	do	not	record	Tsys	at	all.	The	current	version
log2ant	is	rather	reliable.

Wrapper	pf.py	supports	log	parsing.	The	following	command	does	this:

usage:	pf.py	EEE	B	logs

where	EEE	is	the	experiment	name	and	B	is	the	band.	It	creates	output	file	EEE_AA.ant,	where	AA	is	a	two	character	long	low	case	antenna	name.

Calibrating	the	data

FITS-IDI	visibility	file	is	supposed	to	have	all	calibration	information	inside.	However,	only	Socorro	correlator	inserts	all	calibration	information	into	FITS-IDI.	Visibility	files	from	all	other	correlator
missing	some	or	all	calibration	information.

Although	the	visibility	data	from	the	old	hardware	VLBA	correlator	has	all	calibration	information,	it	is	recommended	to	re-load	it	since	in	some	cases	the	calibration	information	is	not	correct	and	re-
loading	fixes	the	problem.	There	is	no	need	to	reload	calibration	information	to	FITS-IDI	files	generated	in	Socorro	by	DiFX	2.0	and	newer.

Field	System	log	files	contain	a)	on-off	start/stop	scan	time;	'	b)	meteorological	information;	c)	cable	calibration;	d)	frequency	table;	e)	system	temperature.	VLBA	log	files	contain	phase	calibration	phases
and	amplitudes	in	addition	to	that.

PIMA	task	gean	inserted	the	calibration	tables	into	PIMA	internal	data	structures.	Task	gean	requires	a	qualifier	that	is	followed	by	the	value.	The	following	qualifiers	are	supported:

anc_file	—	loading	Tsys,	cable	calibration,	and	meteorological	information	in	PIMA	ANTCAL	format.	The	value	of	this	qualifier	is	the	file	name.	One	file	contains	calibration	information	for	one
station.

Files	in	ANTCAL	format	contains	telemetry	collected	by	the	the	Fields	system	sofware	that	control	radio	telescopes.	The	orginal	telemetry	in	the	internal	Fields	system	format	(Level	0	data)	are
transformed	to	ANTCAL	format	with	a	use	of	log2ant	utility.

pima_antab_file	—	loading	Tsys,	cable	calibration,	and	meteorological	information	in	PIMA	ANTAB	format.	The	value	of	this	qualifier	is	the	file	name.	One	file	contains	calibration	information
for	one	station.

vlba_log_file	—	loading	Tsys,	cable	calibration,	phase	calibration	and	meteorological	information	in	VLBA	calibration	format.	The	value	of	this	qualifier	is	the	file	name.	One	file	contains
calibration	information	for	all	stations	that	have	VLBA	data	acquisition	terminal,	i.e	ten	VLBA	stations	and	EFLSBERG.	The	NRAO	pipeline	names	this	file	as	EEEcal.vlba,	where	EEE	is	the	name	of
the	experiment.

Comment	1:	After	adopting	DBBC	in	2013,	the	NRAO	has	changed	the	data	processing	chain.	It	still	provides	legacy	calibration	file,	but	that	legacy	calibration	is	inadequate	for	processing	DBBC	data.
You	should	not	load	legacy	calibration	into	PIMA	when	processing	DBBC	NRAO	data.

Comment	2:	Although	FITS-IDI	from	analogue	NRAO	observations	prior	2013	contains	phase-calibration,	system	temperature,	phase	calibration,	and	phase	calibration,	it	is	desirable	to	re-load
calibration	into	PIMA	using	task	gean.	The	instances	when	calibration	information	into	FITS-IDI	supplied	by	the	NRAO	was	incorrect	were	found.

Comment	3:	PIMA	issues	warnings	about	missing	phase-cal	and	Tsys.	If	PIMA	uses	phase	calibration	and	for	a	given	observation	phase	calibration	is	missed,	PIMA	will	declare	that	observation	as
"bad"	and	will	not	perform	fringe	fitting.	Though	PIMA	will	process	such	an	observation	if	PCAL:	NO	is	specified	in	the	control	file.	As	of	2016.01.17	PIMA	task	splt	will	bypass	observations	with
missing	system	temperature.

vlba_gain	—	inserts	antenna	gain	information	stored	in	VLBA	gain	file	into	PIMA	data	structures.	The	value	of	the	qualifier	is	the	file	name.	The	antenna	gain	file	is	supposed	to	the	VLBA	gain
format.	This	file	can	be	found	at	http://www.vlba.nrao.edu/astro/VOBS/astronomy/vlba_gains.key.	It	is	updated	several	time	a	year.	PIMA	will	update	gains	only	for	stations	that	are	defined	in	this
file	and	do	not	change	gain	of	other	stations.

https://sourceforge.net/projects/log2ant/
https://github.com/nasa/sgdass/blob/main/atp/doc/antcal_specs-v1.txt
https://github.com/nasa/sgdass/blob/main/atp/doc/antcal_specs-v1.txt
https://sourceforge.net/projects/log2ant/
http://www.vlba.nrao.edu/astro/VOBS/astronomy/vlba_gains.key

Comment:	Although	FITS-IDI	generated	by	NRAO	at	Socorro	contains	antenna	gains,	it	is	desirable	to	re-load	calibration	into	PIMA	using	task	gean.	The	instances	when	old	calibration	information
into	FITS-IDI	supplied	by	the	NRAO	was	incorrect	were	found.

evn_gain	—	inserts	antenna	gain	information	stored	in	the	EVN	antab	format	file	into	PIMA	data	structures.	The	value	of	the	qualifier	is	the	file	name.	PIMA	will	update	gains	only	for	stations	that
are	defined	in	this	file	and	do	not	change	gain	of	other	stations.

pcal_off	—	turns	the	phase	calibration	off	for	a	given	station.	The	value	of	this	qualifier	is	the	station	name.	PIMA	turns	off	the	flag	of	phase	calibration	availability.	As	a	results	PIMA	considers
that	phase-calibration	is	unavailable	for	that	station.	The	flag	can	be	turned	on	back.	If	pcal	was	turned	off	for	a	given	station,	it	cannot	be	turned	by	a	fine-grained	PCAL	option.

pcal_on	—	turns	the	phase	calibration	on	for	a	given	station.	The	value	of	this	qualifier	is	the	station	name.	This	operation	undoes	operation	pcal_off	and	sets	flag	of	phase	calibration	availability.	Of
course,	this	operation	will	have	effect	only	if	there	are	phase	calibration	data	loaded	in	PIMA	internal	data	structure.	If	pcal	was	turned	on	for	a	given	station,	it	can	be	turned	off	by	a	fine-grained
PCAL	option.

tsys_off	—	turns	off	Tsys	for	a	given	station.	The	value	of	this	qualifier	is	the	station	name.	This	task	turns	Tsys	availability.	As	a	results	PIMA	skips	that	station	for	imaging.	The	flag	can	be	turned
on	back.	Turning	Tsys	off	may	be	necessary	if	Tsys	is	missing	or	corrupted,	or	a	user	wants	to	avoid	using	that	station	for	imaging	for	any	reason.

tsys_on	—	turns	Tsys	on	for	a	given	station.	The	value	of	this	qualifier	is	the	station	name.	This	task	undoes	tsys_off	and	makes	Tsys	availability	if	Tsys	data	are	loaded	in	PIMA.

wvr	—	processes	water	vapor	radiometer	data	into	PIMA	internal	data	structures.	This	qualifier	has	value	either	load,	plot1,	and	plot2.	All	these	operations	load	all	WVR	data	specified	in	the
keyword(s)	WVR_FILE	in	the	control	file.	If	the	value	of	wvr	qualifier	is	plot1,	then	in	addition	to	loading,	PIMA	will	generate	a	plot	of	WVR	path	delay	versus	time.	If	the	value	of	wvr	qualifier	is
plot1,	then	in	addition	to	loading,	PIMA	will	generate	a	plot	of	WVR	path	delay	versus	elevation.

NB:	Antenna	gain,	system	temperature,	meteorological	information	and	cable	calibration	does	not	change	result	of	fringe	fitting.	Therefore,	these	calibration	can	be	applied	after	fringe	fitting.	Phase
calibration	affects	result	of	fringe	fitting.	Therefore,	it	is	supposed	to	perform	this	kind	of	calibration	before	fringe	fitting.	If	you	changed	phase	calibration,	phase	calibration	status	(pcal_on,	pcal_off),	you
have	to	redo	bandpass	calibration	and	fringe	fitting.	Otherwise,	you	will	get	wrong	results.

Examine	raw	data	and	calibration	information

An	analyst	must	always	examine	the	data	and	calibration	information	before	running	fringe	fitting	as	carefully	as	possible.	If	an	error	will	not	be	noticed	at	the	initial	examination,	then	the	analysis	will
be	have	be	redone.	Attentiveness	during	early	examination	saves	time	and	reduces	the	probability	that	the	error	will	not	be	noticed	and	will	lead	to	an	erroneous	result.

Examining	gean	log	files.	This	file	has	information	about	possible	errors	in	FITS-IDI.	Keyword	CHECK_SEVERITY:	2	in	the	control	file	will	cause	PIMA	stop	at	many	errors.	Keyword
CHECK_SEVERITY:	1	will	allow	to	continue	loading	with	a	damaged	visibility	file.	However,	PIMA	recovery	algorithm	may	be	too	permissive.	Sometimes,	data	may	require	flagging	after	loading
corrupted	FITS-IDI.

When	PIMA	successfully	loads	the	data,	it	creates	a	number	of	dumps	files.	They	are	created	to	facilitate	inspection	of	the	data.

Examining	statistics	file.	Upon	successful	loading,	PIMA	creates	statistics	file	and	SSSSS/EEE.stt,	where	is	SSSSS	the	PIMA	scratch	directory	specified	in	EXPER_DIR	keyword	of	the	control
file,	and	EEE	is	the	lower	case	experiment	name.	An	analyst	should	check	among	other	things	a)	whether	all	FITS-IDI	were	read;	b)	whether	the	data	have	all	polarizations,	c)	whether	the	data
for	all	time	range	were	read	(nominal	start	and	stop	date);	d)	whether	data	from	all	stations	were	read.

Examining	the	source	list.	Upon	successful	loading,	PIMA	writes	the	source	file	dump	in	SSSSS/EEE.sou.	This	file	is	just	the	ascii	dump	of	the	internal	source	table.	You	should	examine	source
names	and	a	priori	source	coordinates.	PIMA	gets	a	priori	source	coordinates	from	the	catalogue	file.	In	general,	the	a	priori	source	coordinates	are	not	the	same	as	the	coordinates	used	by	the
correlator.	However,	if	the	differences	are	large	(say,	more	than	10	mas),	an	analyst	should	be	aware	of	that.	Large	discrepancies	between	the	a	priori	coordinates	used	by	the	correlator	and
those	specified	in	the	catalogue	may	trigger	a	parabolic	phase	correction.	This	corrections	needed	if	the	coordinates	used	by	the	correlator	were	not	precise.	But	this	correction	will	degrade	the
results	and	even	cause	a	non-detection	if	the	a	priori	coordinates	in	the	catalogue	are	wrong,	f.e.	a	wrong	source	name	was	associated.

Examining	the	frequency	list.	PIMA	writes	the	frequency	file	dump	in	SSSSS/EEE.frq.	PIMA	sorts	the	frequencies	and	transforms	low	side	band	data	with	frequencies	running	in	the
decreasing	order	into	upper	side	band	data	with	frequencies	running	in	the	increasing	order.	PIMA	control	file	supported	keywords	BEG_FRQ,	END_FRQ,	and	FRQ_GRP	that	have
intermediate	frequency	or	frequency	group	indices	as	their	values.	An	analyst	should	be	aware	to	which	sky	frequencies	these	indices	correspond.

Examining	the	station	list.	PIMA	writes	the	frequency	file	dump	in	SSSSS/EEE.sta.	The	file	has	information	about	station	names,	station	coordinates,	and	number	of	Stokes	parameters.

There	are	other	dump	files,	but	normally	they	should	be	inspected	in	a	case	of	problems.	File	with	extension	.obs	lists	the	observations,	observing	stations,	observed	sources,	start	and	stop
time.	File	with	extension	.sca	lists	the	scans,	observed	sources,	stop	and	start	dates.	File	with	extension	.timlists	time	tags	of	valid	visibilities.	File	with	extension	.mod	lists	start	and	stop	time
for	parameters	of	the	interferometric	model.	File	with	extension	.mdu	shows	association	of	observations	with	intervals	of	interferometric	model.	File	with	extension	.mdc	lists	parameters	of
clocks	used	in	the	correlator	model.	File	with	extension	.mda	lists	parameters	of	the	atmosphere	path	delay	used	by	the	correlator.	Very	long	file	with	extension	.uv	lists	all	cross-correlation	and
autocorrelation	visibilities.	File	with	extension	.dup	shows	duplicate	visibilities.	File	with	suffix	_uv.exc	lists	indices	of	excluded	visibilities	if	UV_EXCLUDE_FILE:	AUTO	was	specified	in	the
PIMA	control	file.

Examining	phase	calibration.	PIMA	has	a	special	task	pcpl.	It	is	useful	for	examining	1	to	8	phase	calibration	tones	per	IF.	If	there	are	more	phase	cal	tones,	the	plot	become	crowded	what	makes	it
difficult	to	read.	An	analyst	should	make	a	decision	whether	phase	calibration	signal	is	useful	or	not.	Keep	in	mind,	DiFX	correlator	will	extract	signal	at	frequencies	where	it	supposed	to	be
regardless	whether	phase	calibration	unit	was	on	or	off.	If	the	unit	was	off,	phase	calibration	phases	will	be	a	noise,	and	applying	such	phases	will	ruin	observations	completely.	PIMA	task	gepm
will	catch	this	case	and	mask	out	such	tones.

What	to	look?	First	to	look	at	phase	cal	phases.	Phase	cal	scatter	with	respect	to	a	smoothed	curved	should	not	be	excessive	(more	than	0.3	rad).	Sometimes	phase	calibration	may	vary	significant
with	time.	Plot	of	"phase	cal	relative	f0"	(R),	i.e.	differences	of	phase	calibration	phases	with	respect	to	the	phase	at	the	lowest	frequency	is	helpful	in	this	situation.	Another	useful	statistics	is	"phase
cal	amplitude"	(M).	There	are	several	factors	that	causes	variation	of	phase-cal	amplitudes.	Phase	calibration	amplitude	is	proportional	to	T_sys,	which	depends	on	elevation	and	may	depend	on
time.	The	second	factor	is	presence	of	spurious	narrow-band	signal(s)	generated	by	the	hardware.	This	signal	distorts	phase	and	amplitude	of	the	phase-calibration	signal.	If	front-filters	are	not
tuned	well,	the	phase	calibration	signal	at	the	image	sub-band	may	distort	phase	and	amplitude	of	the	phase	cal	signal	at	the	primary	sub-band.	Plot	of	"phase	amp	versus	phase"	(V)	help	to	reveal
the	presence	of	spurious	signals.	There	is	no	dependence	of	phase	calibration	amplitude	on	phase	if	the	hardware	is	perfect.	Sinusoidal	pattern	indicates	the	presence	of	spurious	signals.	Spurious
signal	with	amplitude	less	than	10%	of	the	average	amplitude	are	usually	harmless,	while	the	use	of	phase	calibration	with	spurious	signals	with	the	amplitude	50%	may	significantly	degrade
results.	PIMA	task	gepm	implements	all	of	these	heuristics	in	a	repeatable	and	automatic	way.	After	running	gepm,	it	is	a	good	idea	to	look	at	phase	calibration	once	more	to	determine	whether	any
spurious	signals	remain.

An	analyst	should	make	a	decision	whether	to	keep	phase	calibration	for	a	given	station	or	not.	PIMA	allows	to	disable	phase	calibration	for	any	given	station	or	for	all	stations.	In	order	to	disable
phase	calibration	for	all	the	stations,	PCAL:	NO	should	be	specified	in	the	control	file.	Task	gean	allows	to	disable	phase	calibration	for	a	given	station.	It	requires	qualifier	pcal_off	that	needs	a
value:	station	name.	If	to	run	task	gean	with	qualifier	pcal_on,	the	phase	calibration	for	a	given	station	will	be	enabled.	NB:	if	you	loaded	the	experiment	with	PCAL:	NO,	PIMA	does	not	read	phase
calibration,	and	therefore	task	gean	cannot	be	enabled	it.	You	need	to	load	the	experiment	again	in	order	to	enable	phase	calibration.

Task	pcpl	supports	an	optional	qualifier	pcal_type	that	can	take	value	raw	and	average.	By	default,	PIMA	averages	phase	calibration	within	a	scan,	and	task	pcpl	shows	averaged	phase	calibration
phases	and	amplitudes.	If	raw	is	selected,	no	averaging	is	performed.

In	addition,	PIMA	provides	a	fine-grained	mechanism	for	toggling	status	to	use	or	not	to	use	pcal	for	given	stations.	Keyword	PCAL	supports	a	qualifier	that	provides	a	station	list.

Syntax:

PCAL:	value[:action:[station[:station]...]

A	separator	:	(column)	or	,	(comma)	between	stations	is	allowed.

Action	is	either	TO_USE	or	NOT_TO_USE.	The	action	is	case	insensitive.	If	action	is	TO_USE,	then	pcal	only	from	the	stations	form	the	list	will	be	used.	If	action	is	NOT_TO_USE,	then	pcal	from	the
stations	on	the	list	will	not	be	used.	Example:

									PCAL:			USE_ALL:NOT_TO_USE:MEDICINA,NYALE13S,RAEGSMAR,YARRA12M

Here	phase	calibration	from	the	following	stations,	MEDICINA,	NYALE13S,	RAEGSMAR,	YARRA12M	will	not	be	used.

									PCAL:			USE_ALL:to_use:HART15M,KOKEE,WETTZELL

Here	phase	calibration	only	from	the	following	stations,	HART15M,KOKEE,WETTZELL	will	be	used	provided	the	phase	is	available	and	was	not	turned	off	with	task	gean.

Fine-grained	pcal	station	selection	can	change	phase	calibration	use	status	only	if	pcal	is	available	and	was	not	turned	off	using	task	gean.

Examining	system	temperature.	PIMA	task	tspl	displays	system	temperature	for	a	given	IF.	By	default,	tspl	shows	Tsys	for	the	first	IF.	The	IF	index	can	be	changed	by	hitting	box	"Frequency
selection"	(V).	Tsys	can	be	displayed	versus	time	(T)	and	versus	elevation	(E).	Tsys	can	be	decomposed	in	the	product	of	Tsys	in	the	zenith	direction	as	a	function	of	time	and	the	Tsys	elevation
dependence.	The	first	part,	Tsys	in	the	zenith	direction	is	show	by	button	(Z).	The	second,	Tsys	as	a	function	of	elevation	angle	is	shown	by	button	(D).

What	to	look?	If	PIMA	shows	no	Tsys,	that	means	it	was	not	loaded.	If	need	to	check	log	file	and	if	possible,	to	fix.	Then	you	need	to	re-run	task	gean.	Sometimes	Tsys	is	so	noisy	or	wrong	that
keeping	such	a	station	will	degrade	reconstructed	source	images.	In	that	case	bad	Tsys	in	certain	IFs	can	be	disabled	by	editing	so-called	gain	correction	file	specified	by	the
GAIN_CORRECTION_FILE	control	file.	Alternatively,	Tsys	can	be	marked	as	"not	usable	for	the	list	of	stations	using	:NOT_TO_USE:	qialifier	aftr	the	value	of	TSYS	qualifer.	Her	is	example:

									TSYS:			CLEANED:NOT_TO_USE:HOBART26,NYALE13S

Here	system	temepature	for	stations	HOBART26	and	NYALE13S	is	marked	as	unusable.	PIMA	task	load	creates	and	initializes	it	if	the	file	specified	by	that	control	file	does	not	exist.	The	gain
corrections	file	specifies	for	each	station,	each	IF	a	factor	that	splt	will	multiplies	Tsys.	PIMA	does	not	modify	the	file	if	it	exist.	An	alternative	way	to	initialize	gain	correction	file	is	to	run	task	gaco
with	qualifier	init.	That	qualifier	requires	a	value	either	fill	or	overwrite.	Value	fill	instructs	PIMA	to	add	missing	records:	if	for	some	IFs,	some	stations	the	gain	correction	was	not	defined,	PIMA
will	add	record	with	correction	equal	to	1	(i.e.	no	correction).	If	the	qualifier	init	has	value	overwrite,	PIMA	will	overwrite	previous	definitions	with	1.	If	for	a	given	IF,	given	station	the	gain
correction	is	0.0,	then	PIMA	task	splt	will	set	amplitude	zero	and	such	an	IF	will	not	be	used	for	imaging.

Running	a	trial	fringe	fit	for	a	given	observation.	It	has	sense	to	look	at	fringe	plot	of	several	scans	of	a	strong	source.	A	number	of	strong	sources	are	usually	observed	in	a	well	designed	experiment.
Examining	dump	with	extension	SSSSS/EEE.obs	helps	to	find	indices	of	observations	of	strong	sources.	Wrapper	pt.py	is	useful	for	running	a	trial	fringe	fit.	It	has	the	following	syntax:

Usage:	pt.py	[-pt	optios]	EEE	B	obs	[pima_opts]

where	is	the	low	case	experiment	name,	band	is	the	low	case	band	name,	and	obs	is	the	observation	index.	These	mandatory	arguments	may	be	followed	by	additional	arguments	of	the	command
line	for	PIMA	that	are	in	the	usual	format	keyword:	value.	The	wrapper	itself	supports	options	--dry-run	(-r)	and	--verbosity	(-v).	Option	--dry-run	just	shows	the	PIMA	command	line	without
execution.	Option	--verbosity	requires	a	value.	Value	0	means	no	informational	messages,	value	1	(default)	moderate	verbosity	and	values	2	and	3	more	and	more	verbose	output.

If	the	PIMA	control	file	defines	BANDPASS_FILE,	and/or	BANDPASS_MASK_FILE,	and/or	PCAL_MASK_FILE,	and/or	POLARCAL_FILE	that	do	not	exist,	wrapper	pt.py	replaces	them	with	NO	and
issues	a	warning.

pt.py	displays	two	fringe	plots:	versus	frequency	(and	averaged	over	time)	and	versus	time	(and	averaged	over	frequency).	If	a	source	is	weak,	the	plot	may	look	too	noisy.	Keyword
FRIB.1D_FRQ_MSEG	averages	the	data	over	frequency	after	performing	fringe	fit	and	before	plot	preparation.	The	value	of	the	keyword	specifies	how	many	spectral	channels	are	coherently
averaged	out.	This	parameter	should	not	exceed	the	total	number	of	spectral	channels	in	an	IF.	Analogously,	FRIB.1D_TIM_MSEG	averages	the	data	over	time	after	performing	fringe	fit	and	before
plot	preparation.	The	value	of	the	keyword	specifies	how	many	accumulation	periods	are	coherently	averaged	out.

What	to	look?	First,	whether	the	source	is	detected.	As	a	rule	of	thumb,	SNR	>	7.0	and	higher	indicates	a	reliable	detection,	SNR	in	a	range	of	[6.0,	7.0]	is	a	marginal	detection,	SNR	in	a	range	[5.1,	6.0]
is	unlikely	a	detection,	and	SNR	<	5.1	usually	is	a	non-detection.	If	an	observation	you	picked	is	a	non-detection,	try	another.	If	all	observations	are	non-detections	—	bad	luck,	you	can	stop	analysis
on	this	point.	Nothing	can	be	done.

Since	no	bandpass	calibration	is	applied	at	this	point,	the	phases	are	not	aligned.	However,	the	residual	fringe	phases	should	follow	a	more	or	less	a	smooth	line	for	a	high	SNR	observation.	Jumps,	or
low	amplitudes	at	some	IFs	raises	a	concern.	Phase	behavior	at	individual	IFs	can	be	examined	by	running	pt.py	with	specifying	the	IF	under	consideration	with	keywords	BEG_FRQ	and	END_FRQ.

Running	coarse	fringe	fitting

The	goal	for	coarse	fringe	fitting	is	preparation	for	bandpass	computation	and	for	initial	data	examination.	Coarse	fringe	fitting	uses	single	polarization	data	(RR	for	dual-polarization	data),	does	not	use
bandpass,	because	usually	bandpass	is	not	known	at	that	time,	and	uses	no	oversampling	in	order	to	speed	up	computation,	and	performs	the	parabolic	fine	fringe	search.	Therefore,	the	following
parameters	are	always	set:

BANDPASS_USE:										NO
BANDPASS_FILE:									NO
POLARCAL_FILE:									NO
FRIB.OVERSAMPLE_MD:				1
FRIB.OVERSAMPLE_RT:				1
FRIB.FINE_SEARCH:						PAR
MKDB.FRINGE_ALGORITHM:	DRF

If	the	bandpass	mask	file	is	not	available,	then	BANDPASS_MASK_FILE:	NO	is	set.	POLAR:	RR	is	set	for	dual-polarization	or	RR	data	and	POLAR:	LL	is	set	to	LL-polarization	data.	Usually	PIMA	runs	in
both	coarse	and	fine	fringe	fitting	mode.	It	is	desirable	to	store	results	of	coarse	and	fine	fringe	fitting	in	separate	files.	Therefore,	when	we	run	coarse	fringe	fitting,	we	set	FRINGE_FILE	and
FRIRES_FILE	into	different	files	than	those	specified	in	the	PIMA	control	file.

To	run	coarse	fringe	fitting,	task	frib	is	used.	PIMA	wrapper	pf.py	simplifies	running	coarse	fringe	fitting.	Syntax:

	Usage:	pf.py	EEE	B	coarse	

where	EEE	is	the	experiment	name	and	B	is	band	in	lower	case.	Wrapper	will	write	fringe	result	in	VVVVV/EEE/EEE_B_nobps.fri	and	fringe	fitting	residuals	into	VVVVV/EEE/EEE_B_nobps.frr	files.

Computation	of	a	complex	bandpass

Computation	of	the	complex	bandpass	is	the	second	major	task	that	requires	human	intervention.	The	bandpass	of	the	ideal	system	is	rectangular	shape	for	the	amplitude	and	zero	for	phase.	That	means
that	cross-correlation	spectrum	of	a	signal	from	a	radio	sources	with	continuum	flat	spectrum	is	also	flat	with	some	constant	phase	offset	and	the	multiplicative	factor	that	is	proportional	to	the	square
root	of	the	products	of	Tsys	at	both	stations.	Unfortunately,	up	to	date	perfect	VLBI	hardware	is	not	yet	developed.	The	cross-correlation	spectrum	diverts	from	the	ideal	(flat	phases	and	flat	amplitudes).
The	use	of	phase-calibration	may	alleviate	the	deviation	from	the	ideal	spectrum,	may	have	no	visible	effect	or	may	even	degrade	it,	but	never	fixes	phases.	Therefore,	normally	a	complex	function	of
frequency	is	computed	that	being	multiplied	by	the	cross-spectrum	makes	it	flat.	This	function	can	be	computed	reliably	using	sources	with	SNR	>	200,	but	preferably	with	SNR	>	1000.	A	good	principle
investigator	does	not	hesitate	to	spend	a	sizable	amount	of	allotted	time	for	observing	bright	sources	that	are	used	as	calibrators.	Bandpass	calibration	can	still	be	performed	using	source	with	SNR	40–
200,	but	less	reliable.	Quality	of	bandpass	derived	using	observations	with	SNR	in	a	range	10–40	is	questionable.	Bandpass	calibrator	sources	are	supposed	to	be	continuum	with	the	spectrum	flat	within
an	IF.	Any	active	galaxy	nuclea	satisfies	this	condition.

In	a	case	when	phase	calibration	is	applied,	the	bandpass	is	computed	with	respect	to	the	phase	calibration.	If	you	use	all	tones	of	phase	calibration,	you	should	first	clean	them	and	mask	out	the	tones
affected	by	internal	radio	interference	(spurious	signals).

It	is	assumed	the	residual	bandpass	is	stable	with	time.	An	experiment	may	have	jumps	in	the	bandpass	due	to	power-off	power-on	of	the	VLBI	hardware	at	one	or	more	stations.	Unfortunately,	as	of
2016.02.01	PIMA	does	not	provide	a	convenient	way	for	processing	such	data.	The	workaround	is	to	effectively	split	the	dataset	into	two	subsets	before	and	after	the	jump	and	compute	two	bandpasses.
Splitting	the	dataset	can	use	made	using	keywords	OBS,	INCLUDE_OBS_FILE,	and	EXCLUDE_OBS_FILE.	Fortunately,	jumps	in	bandpass	occur	in	less	than	5%	VLBI	experiments.

An	analyst	usually	sets	the	mask	for	cross-spectrum	data	during	this	step.	The	mask	is	an	array	of	1	and	0	that	depends	on	spectral	channel	index.	PIMA	multiplies	the	mask	by	visibilities	when	it
processes	the	data.	Zeroes	in	the	mask	effectively	replaces	the	spectral	channels	with	zeroes.	Usually	unwanted	potion	of	the	spectrum	is	masked	out:	either	affected	by	RFI	or	affected	by	hardware
bandpasses.	If	a	signal	is	narrow-band,	for	instance	from	an	stellar	maser,	then	masking	allows	to	discard	spectral	channels	that	have	no	signal,	but	only	noise.

Cleaning	phase	calibration

If	you	use	four	or	more	tones	of	phase	calibration	per	IF,	you	should	first	clean	them	and	mask	out	the	tones	affected	by	internal	radio	interference.	Old	VLBA	hardware	extracted	two	phase	calibration
tones	per	IF.	PIMA	treats	this	case	as	a	single	tone	per	IF.	A	user	can	select	which	tone	to	use.	If	less	four	tones	per	IF	was	extracted	in	your	experiment	or	you	do	not	apply	multiples	phase	cal	tones	per
IF,	just	skip	this	section.

Usually,	phase	calibration	signal	is	a	rail	of	very	narrow-band	signals	with	frequency	separation	1	MHz	which	less	than	the	spectral	resolution	of	visibility	data.	PIMA	interpolates	spectrum	of	phase
calibration	within	each	IF.	In	a	case	if	only	one	tone	per	IF	is	used	PIMA	considers	phase	spectrum	of	the	calibration	signal	is	flat,	i.e.	it	assigns	the	phase	calibration	phase	to	all	spectral	channels.	In	a
case	if	all	phase	calibration	tones	are	used,	PIMA	unwraps	phases	and	performs	linear	interpolation	or	extrapolation.	The	presence	off	spurious	signals	distorts	calibration	phases.	If	they	affect	a	small
fraction	of	all	tones,	the	tones	affected	by	spurious	signals	can	be	masked	out.	Then	PIMA	will	automatically	interpolated	between	tones	that	are	not	affected.

Task	mppl	shows	phase	and	amplitudes	of	phase	calibration	signal	with	multiple	tones	per	IF.	It	may	be	useful	to	use	keyword	OBS	to	control	which	observations	to	use	for	generating	plots.

Task	mppl	shows	several	types	of	plots.	Raw	phase	usually	is	not	informative,	since	the	calibration	signal	may	have	many	phase	turns	per	IF.	Let	PIMA	to	unwrap	phase	for	you.	Plot	of	unwrapped
phases	(U)	shows	the	spectrum:	unwrapped	phases	(green)	and	modeled	phases	(blue).	Bandpass	is	supposed	to	be	smooth.	Jumps	in	phases	is	due	to	spurious	signals.	The	sum	of	the	phase	calibration
tone	and	the	spurious	signal	depends	on	the	phase	of	the	phase	calibration	tone	itself.	Therefore,	if	at	a	given	plot	of	a	given	observation	you	see	phase	that	does	not	strongly	deviate	from	the	smoothed
curve	that	does	not	necessarily	means	that	other	observation	will	not	be	affected	even	if	the	source	of	spurious	signals	does	not	depend	on	time.	Mode	(C)	displays	both	unwrapped	phase	and	amplitude	at
the	same	plot.	Since	spurious	signal	affect	both	phase	and	amplitude	of	the	calibration	signal,	this	plot	helps	to	identify	frequencies	affected	by	spurious	signals.

OK,	you	found	a	peak	at	the	plot	that	you	believe	is	due	to	the	spurious	signal.	What	further?	PIMA	supports	so-called	phase	calibration	mask	file	specified	by	the	keyword	PCAL_MASK_FILE.	This	file
defines	the	value,	0	or	1,	for	each	phase	calibration	tone.	If	the	value	is	zero,	then	that	calibration	tone	is	masked	out	and	not	used	for	computation	of	the	smoothed	curve	that	interpolates	the	phase
calibration	signal	across	an	IF.	One	may	edit	this	file	manually,	but	in	general,	it	is	too	boring.	PIMA	supports	so-called	mask	definition	files	that	allows	to	write	which	calibration	tones	to	suppress	in	a
concise	way.	It	allows	to	define	ranges	of	the	tones	that	are	to	be	mask	out.	An	analyst	edits	the	calibration	mask	definition	file,	converts	it	to	the	phase	calibration	mask,	visualizes	the	phase	calibration
phases	and/or	amplitudes	and	repeat	this	procedure	till	a	satisfactory	result	is	produced.

Phase	calibration	mask	definition	file	consists	of	records	of	variable	length.	The	first	record	identifies	the	format.	It	should	always	be	be	#	PIMA	PCAL_MASK_GEN	v	1.00	2015.05.10	Lines	that	start
with	'#',	except	the	first	one,	are	considered	comments,	and	the	parser	ignores	them.	Mask	definition	records	consists	of	8	words	separated	by	one	or	more	blanks	PCAL	STA:	ssssssss	IND_FRQ:	aa-
bb	IND_TONE:	xx-yy	OFF

where	sssssss	is	the	station	name,	aa	is	the	index	of	the	first	IF	of	the	range,	bb	is	the	index	of	the	last	IF	of	the	range,	xx	is	the	index	of	the	first	tone	in	a	given	IF	range	and	yy	is	the	index	of	the	last
tone	in	a	given	IF	range.	Here	is	an	example:

#	PIMA	PCAL_MASK_GEN		v		1.00	2015.05.10
#
#		Phase	calibration	mask	definition	file	for	VLBI	experiment	VEPS02
#
#		Last	updated	on		2015.05.13_12:35:17
#
PCAL		STA:			KUNMING					IND_FRQ:			1-1			IND_TONE:			30-31		OFF
PCAL		STA:			SESHAN25				IND_FRQ:			8-8			IND_TONE:				4-4			OFF
PCAL		STA:			URUMQI						IND_FRQ:			1-16		IND_TONE:				1-1			OFF

The	first	line	identifies	the	format.	The	file	defines	the	mask	that	deselects	tones	with	indices	30–31	of	the	first	IF	for	station	KUNMING,	the	tone	with	index	4	for	the	8th	IF	for	station	SESHAN25,	and	the
first	tone	in	all	IFs	from	the	1st	to	the	16th	for	station	URUMQI.

PIMA	does	not	accept	the	mask	definition	file	directly.	Task	pmge	transforms	the	phase	calibration	mask	definition	file	into	phase	calibration	mask	file.	That	task	requires	qualifier	mask_gen	with	value
mask	definition	file.	The	name	of	the	output	file	is	defined	by	keyword	PCAL_MASK_FILE	in	the	PIMA	control	file.	Example:

pima	ru0186_x_pima.cnt	pmge	mask_gen	ru0186_pcal_mask.gen

Comments:

Masking	a	phase	calibration	tone	also	excludes	from	unwrapping	the	phase	calibration	phase.	The	phase	unwrapping	algorithm	subtracts	group	delay	in	the	calibration	signal.	Therefore,	removal	of
one	or	more	points,	especially	of	they	were	outliers,	changes	the	unwrapped	phases.

Usually	a	mask	is	applied	to	all	observations.	Some	spurious	signals	may	go	on	and	off.	Therefore	it	is	a	good	idea	to	look	at	phase	calibration	at	different	parts	of	the	experiment.

Automatic	masking	is	done	through	the	PIMA	task	gepm.	This	task	has	three	required	parameters	and	three	optional	parameters.	The	first	is	sta,	which	selects	the	station	for	which	automatic	phase
calibration	masking	is	to	be	done.	Passing	the	sta	parameter	the	value	all	will	automatically	mask	all	phase	calibration	tones	at	once	and	is	the	normal	mode	of	operation.	The	second	required
parameter	is	tim_mseg,	which	controls	the	averaging	interval	of	phase	calibration	data.	gepm	will	average	phase	calibration	data	such	that	the	interval	between	phase	calibration	samples	is	as	close	to
this	parameter	as	possible.	If	phase	calibration	data	has	a	relatively	high	sample	rate,	increasing	this	parameter	may	improve	the	results	of	automatic	phase	calibration	masking.	Passing	a	value	of
tim_mseg	below	the	sampling	interval	of	the	phase	calibration	data	leaves	the	data	unchanged,	thus	passing	tim_mseg	0	will	always	result	in	no	averaging	of	data.	The	third	required	parameter	is
overwrite,	which	should	always	be	given	as	overwrite	yes.	This	indicates	that	it	is	acceptable	to	overwrite	the	existing	phase	calibration	mask	file.

The	three	optional	parameters	pertain	to	the	methods	used	in	automatic	phase	calibration	masking.	The	first	is	tim_thresh,	which	controls	the	threshold	fraction	of	flagged	epochs	at	which	a	phase
calibration	tone	is	masked	out.	The	default	value	is	0.1,	or	10%	flagged	epochs	for	masking	out.	An	epoch	is	flagged	when	the	modeled	phase	of	the	phase	calibration	tone	differs	from	the	measured	phase
by	more	than	diff_thresh,	indicating	a	discontinuity	typical	of	a	spurious	signal.	diff_thresh,	the	second	optional	parameter,	thus	determines	the	level	of	discontinuity	in	the	frequency	domain	in	an	IF
indicative	of	a	spurious	signal.	The	default	value	of	this	parameter	is	0.15	radians.	This	can	be	increased	to	reduce	the	number	of	masked	out	tones	or	lowered	to	increase	the	number	of	masked	out	tones.
Be	careful	of	lowering	it	too	much,	as	healthy	tones	may	be	flagged	due	to	normal	phase	jitter.	The	third	optional	parameter	is	max_count.	This	controls	the	maximum	allowed	number	of	statistically
significant	jumps	in	the	phase	time	series	a	tone	may	have.	The	default	value	is	50.

Upon	completion	of	gepm,	several	files	are	produced.	The	first	is	an	indication	of	the	health	of	the	phase	calibration	tones	in	the	form	of	the	root-mean-square	phase	jitter	in	the	time	domain	and	the
frequency	domain.	This	file	is	saved	in	the	form	exp_band_pcal_rms.txt.	gepm	also	produces	a	report	file	of	the	form	exp_band_pcal_report.gen.	This	report	file	shows	the	specific	tones	that	have
been	masked	out	as	well	as	the	reason	for	their	masking	out.	In	addition,	this	report	file	can	be	hand-edited	to	turn	off	additional	tones	and	turned	into	a	phase	calibration	mask	using	the	task	pmge	with
the	usual	syntax,	calling	the	report	file	as	the	generator	file.	An	excerpt	of	a	typical	rms	file	and	report	file	are	shown	below:

#	PIMA	PCAL_RMS			Format	of	2022.06.30
#	
#	PCAL_RMS	file	for	experiment	r41056
#	
#	created	by	#	PIMA	PCAL_RMS_GEN		v		1.00	2022.06.30	on	2023.01.02-20:26:23
#	using	control	file	/vlbi/r41056/r41056_s_pima.cnt
#	
AVERAGE	TIME	SPACING:						8.606	SEC
TIME	DIRECTION	RMS	PHASE	CALIBRATION	JITTER	(RAD)	BY	CHANNEL:
BADARY			IND_FRQ:					1	IND_TONE:						1	IND_ABS_CHN:							9	RMS:						0.009
BADARY			IND_FRQ:					1	IND_TONE:						2	IND_ABS_CHN:						10	RMS:						0.009
FREQ	DIRECTION	RMS	PHASE	CALIBRATION	JITTER	(RAD)	BY	IF:
BADARY			IND_FRQ:					1											0.017
BADARY			IND_FRQ:					2											0.008

#	PIMA	PCAL_RPT			Format	of	2022.07.07
#	
#	PCAL_RPT	file	for	experiment	r41056
#	
#	created	by	#	PIMA	PCAL_RPT_GEN		v		1.00	2022.07.07	on	2023.01.02-20:26:23
#	using	control	file	/vlbi/r41056/r41056_s_pima.cnt
#	
PCAL		STA:		BADARY			IND_FRQ:					3-3			IND_TONE:					8-8				OFF	!				Problem:		SPURIOUS	SIGNAL					
PCAL		STA:		BADARY			IND_FRQ:					6-6			IND_TONE:					3-3				OFF	!				Problem:		SPURIOUS	SIGNAL					
PCAL		STA:		BADARY			IND_FRQ:					6-6			IND_TONE:					5-5				OFF	!				Problem:		SPURIOUS	SIGNAL					
#		
PCAL		STA:		MEDICINA	IND_FRQ:					3-3			IND_TONE:					1-1				OFF	!				Problem:		PHASE	JUMPS									
PCAL		STA:		MEDICINA	IND_FRQ:					3-3			IND_TONE:					2-2				OFF	!				Problem:		PHASE	JUMPS									
PCAL		STA:		MEDICINA	IND_FRQ:					3-3			IND_TONE:					3-3				OFF	!				Problem:		PHASE	JUMPS

In	addition,	if	all	phase	calibration	tones	are	noise	for	a	given	station,	this	will	be	reported	to	the	user	as	a	text	output	in	the	terminal.	A	clock	break	detection	scheme	is	also	implemented,	and	any
detected	clock	breaks	will	be	reported	along	with	the	time	in	the	time	series	at	which	the	break	occurred.	A	typical	execution	and	terminal	output	is	shown	below:

pima	r11039_s_pima.cnt	gepm	sta	all	tim_mseg	10	overwrite	yes	tim_thresh	0.1	diff_thresh	0.15	max_count	50
	All	pcal	tones	of	station	SEJONG			are	noise.	Recommend	adding	to		PCAL:	not_to_use:		in	control	file
	All	pcal	tones	of	station	SVETLOE		are	noise.	Recommend	adding	to		PCAL:	not_to_use:		in	control	file

	All	pcal	tones	of	station	YARRA12M	are	noise.	Recommend	adding	to		PCAL:	not_to_use:		in	control	file
	For	station	AGGO					short-term	spurious	signal	near	t	=				68973.830720024562							sec
	For	station	HART15M		short-term	spurious	signal	near	t	=				28750.155200028232							sec
	For	station	NYALES20	short-term	spurious	signal	near	t	=				11917.828159952907							sec
	For	station	NYALES20	likely	clock	break	near	t	=				57313.701440090219							sec
	For	station	ONSALA60	short-term	spurious	signal	near	t	=				55581.286400066594							sec
	For	station	SESHAN25	likely	clock	break	near	t	=				13436.420480009539							sec
	For	station	SESHAN25	likely	clock	break	near	t	=				70135.392319724342							sec
WRI_PCAL_RMS:	pcal	rms	file	is	written	in	/vlbi/r11039/r11039_s_pcal_rms.txt
WRI_PCAL_MASK:	pcal	mask	is	written	in	/vlbi/r11039/r11039_pcal.mask
WRI_PCAL_RPT:	pcal	rpt	file	is	written	in	/vlbi/r11039/r11039_s_pcal_report.gen

gepm	has	also	been	added	to	the	wrapper	pf.py	to	make	it	easier	to	use	in	the	fringe	fitting	process.	To	call	gepm	from	pf.py,	the	user	needs	only	to	specify	overwrite.	All	other	parameters	have	listed
defaults.	Thus,	a	minimal	function	call	might	look	like,

	Usage:	pf.py	exp	band		gepm	-overwrite	[-sta,-tim_mseg,-tim_thresh,-diff_thresh,-max_count]

When	using	pf.py,	the	output	from	the	terminal	including	warnings	about	clock	breaks	is	written	to	a	log	file.	A	condensed	phase	calibration	generator	file	is	also	formed	from	the	report	file,	which
increases	readability	but	does	not	list	reasons	for	tone	being	masked	out.	It	is	saved	according	to	the	name	of	the	phase	calibration	mask	file	by	replacing	.mask	with	_mask.gen.	i.e.	for
PCAL_MASK_FILE:	r41056_s_pcal.mask,	the	mask	generator	is	saved	to	r41056_s_pcal_mask.gen.

Masking	auto-	and	cross-correlation	spectral	channels

PIMA	allows	to	mask	out	specified	channels	of	either	auto	or	cross-spectrum	or	both.	The	auto-correlation	spectrum	is	corrupted	by	the	presence	of	internal	RFI	generated	in	the	vicinity	of	the	data
acquisition	system.	Usually	the	internal	RFI	causes	appearance	of	peaks	in	the	auto-correlation	spectrum.	As	a	rule	of	thumb	peaks	with	the	amplitude	less	than	1.5	of	the	average	amplitude	can	be	safely
ignored	and	peaks	with	the	amplitude	greater	than	the	average	by	a	factor	of	2	should	must	be	masked	out	since	they	noticeably	affect	the	fringe	fitting	procedure	and	distort	the	estimate	of	the	average
phase	and	the	amplitude.	Peaks	with	the	amplitude	in	a	range	[1.2,	2]	of	the	average	autocorrelation	are	in	the	border	line.	It	is	not	recommended	to	mask	out	auto-correlation	at	the	edge	of	the	IFs,	since
during	data	processing	PIMA	interpolates	auto-correlation.

Cross-correlation	spectrum	can	be	distorted	by	external	RFI,	such	as	satellite	radio.	Hardware	problem	or	errors	in	the	hardware	setup	may	cause	cause	a	significant	drop	in	the	amplitude	or	a	total	loss
of	signal	either	at	the	entire	IF,	or	a	range	of	IFs,	or	a	portion	of	IFs.	If	there	is	no	signal	in	given	spectral	channels,	the	SNR	will	be	reduced	and	weak	sources	may	not	be	detected.	Masking	out	unwanted
noise	improves	the	SNR.	Cross-correlation	spectrum	from	narrow-band	targets,	such	as	masers	or	satellites	may	not	have	signal	beyond	edges	of	the	bandwidth	even	in	the	absence	of	hardware	failures.

PIMA	supports	mask	file	specified	by	the	keyword	BANDPASS_MASK_FILE.	This	file	defines	four	sets	of	values,	0	or	1,	for	each	phase	spectral	channels.	PIMA	multiplies	visibilities	by	the	mask,	which
effectively	disables	spectral	channels	that	corresponds	to	mask	with	value	0.	The	first	mask	affects	autocorrelations,	and	three	remaining	masks	affect	cross-correlations.	The	second	mask	used	used	only
for	computation	of	bandpass,	the	third	mask	used	for	fringe	fitting,	and	the	fourth	mask	is	used	by	task	splt	for	computing	visibilities	averaged	over	frequency	and	time.	Usually	the	second,	the	third,	and
the	fourth	masks	are	the	same,	i.e.	a	common	mask	for	cross-correlation	is	used.	Autocorrelation	and	cross-correlation	masks	are	usually	different	since	different	factors	lead	to	necessity	to	mask	auto-
correlation	and	cross-correlations.

If	the	mask	for	a	given	cross-correlation	is	zero,	the	corresponding	visibility	is	replaced	with	zero.	If	the	mask	of	a	given	auto-correlation	is	zero,	the	auto-correlation	at	a	given	spectral	channel	is
computed	by	linear	interpolation	between	adjacent	channels,	or	linear	extrapolation,	if	the	masked	channel	is	at	the	edge	of	the	IF.	The	corresponding	cross-correlation	is	not	affected.	Very	often	strong
unmasked	spurious	signals	that	results	in	autocorrelation	greater	than	2–5	of	the	average	level	usually	affect	the	cross-correlation	as	well.	Therefore,	it	is	prudent	first	to	mask	out	strong	spurious	signals
at	autocorrelation	and	then	check	cross-correlation	spectrum.

An	analyst	may	create	the	mask	file	by	hand,	but	this	is	a	tedious	work.	PIMA	supports	so-called	bandpass	mask	definition	files	that	allows	to	specify	the	spectral	channels	that	are	to	be	suppressed	in	a
concise	way.	The	bandpass	mask	definition	file	allows	to	define	ranges	of	the	spectral	channels	that	are	to	be	mask	out.	An	analyst	edits	the	bandpass	mask	definition	file,	converts	it	to	the	bandpass
mask,	visualizes	the	cross-	and	auto-	phase	and	amplitude	spectra,	and	repeat	this	procedure	till	a	satisfactory	result	is	produced.

A	bandpass	mask	definition	file	consists	of	records	of	variable	length.	The	first	record	identifies	the	format.	It	should	always	be	be	#	PIMA	BPASS_MASK_GEN	v	0.90	2009.02.05	Lines	that	start	with
'#',	except	the	first	one,	are	considered	to	be	comments,	and	the	parser	ignores	them.	Mask	definition	records	consists	of	8	words	separated	by	one	or	more	blanks	mmmm	STA:	ssssssss	IND_FRQ:	aa-
bb	IND_CHN:	xx-yy	ddd

where	mmmm	is	the	mask	type:	one	of	AUTC	(autocorrelation	mask),	BPAS	(bandpass	mask),	FRNG	(fringe	fitting	mask),	SPLT	(split	mask),	CROS	(bandpass+fringe_fitting+split	masks),	ALL	(all	masks:
autocorrelation+bandpass+fringe_fitting+split)	sssssss	is	the	station	name,	aa	is	the	index	of	the	first	IF	of	the	range,	bb	is	the	index	of	the	last	IF	of	the	range,	xx	is	the	index	of	the	first	spectral	channel
in	a	given	IF	range	and	yy	is	the	index	of	the	last	spectral	channel	in	a	given	IF	range;	ddd	is	disposition:	ON	or	OFF.	Station	name	may	be	substituted	by	ALL,	what	means	the	definition	affects	all	stations.

The	first	definition	sets	the	default	disposition:	ON	or	OFF.	Unless	you	have	really	pathological	experiment	and	you	have	to	disable	the	majority	of	spectral	channels,	the	first	definition	is	ALL	STA	ON,
what	means	to	enable	all	spectral	channels	The	definitions	are	processed	consecutively.	Each	new	definition	alters	the	mask	defined	by	priori	definitions.	Here	is	an	example:

#	PIMA	BPASS_MASK_GEN		v	0.90	2009.02.05
#
#		Control	for	bandpass	mask	generation	for	VLBI	experiment	BP192B3
#
#		Created	on	2015.11.14_12:33:11
#
ALL				STA:			ALL									ON
#
ALL				STA:			ALL									IND_FRQ:			3-3				IND_CHN:	121-129			OFF
CROS			STA:			KP-VLBA					IND_FRQ:			1-2				IND_CHN:			1-512			OFF
AUTC			STA:			FD-VLBA					IND_FRQ:			4-4				IND_CHN:	431-436			OFF

The	first	line	identifies	the	format.	The	first	non-comment	line	sets	the	initial	mask	1.	The	second	non-comment	lines	disables	both	autcorrelations	and	cross-correlations	for	the	IF	#3,	spectral	channels
121	through	129.	The	third	line	disables	cross-correlation	in	IFs	#1	and	#2	(that	experiment	has	512	spectral	channels	per	IF)	for	station	KP-VLBA.	The	fourth	line	disables	autocorrelation	for	FD-VLBA	in
spectral	channels	from	431	through	436	in	IF	#4	keeping	autocorrelation.

Masking	auto-	and	cross-correlation	spectral	channels

PIMA	allows	to	mask	out	specified	channels	of	either	auto	or	cross-spectrum	or	both.	The	auto-correlation	spectrum	is	corrupted	by	the	presence	of	internal	RFI	generated	in	the	vicinity	of	the	data
acquisition	system.	Usually	the	internal	RFI	causes	appearance	of	peaks	in	the	auto-correlation	spectrum.	As	a	rule	of	thumb	peaks	with	the	amplitude	less	than	1.5	of	the	average	amplitude	can	be	safely
ignored	and	peaks	with	the	amplitude	greater	than	the	average	by	a	factor	of	2	should	must	be	masked	out	since	they	noticeably	affect	the	fringe	fitting	procedure	and	distort	the	estimate	of	the	average
phase	and	the	amplitude.	Peaks	with	the	amplitude	in	a	range	[1.2,	2]	of	the	average	autocorrelation	are	in	the	border	line.	It	is	not	recommended	to	mask	out	auto-correlation	at	the	edge	of	the	IFs,	since
during	data	processing	PIMA	interpolates	auto-correlation.

Cross-correlation	spectrum	can	be	distorted	by	external	RFI,	such	as	satellite	radio.	Hardware	problem	or	errors	in	the	hardware	setup	may	cause	cause	a	significant	drop	in	the	amplitude	or	a	total	loss
of	signal	either	at	the	entire	IF,	or	a	range	of	IFs,	or	a	portion	of	IFs.	If	there	is	no	signal	in	given	spectral	channels,	the	SNR	will	be	reduced	and	weak	sources	may	not	be	detected.	Masking	out	unwanted
noise	improves	the	SNR.	Cross-correlation	spectrum	from	narrow-band	targets,	such	as	masers	or	satellites	may	not	have	signal	beyond	edges	of	the	bandwidth	even	in	the	absence	of	hardware	failures.

PIMA	supports	mask	file	specified	by	the	keyword	BANDPASS_MASK_FILE.	This	file	defines	four	sets	of	values,	0	or	1,	for	each	phase	spectral	channels.	PIMA	multiplies	visibilities	by	the	mask,	which
effectively	disables	spectral	channels	that	corresponds	to	mask	with	value	0.	The	first	mask	affects	autocorrelations,	and	three	remaining	masks	affect	cross-correlations.	The	second	mask	used	used	only
for	computation	of	bandpass,	the	third	mask	used	for	fringe	fitting,	and	the	fourth	mask	is	used	by	task	splt	for	computing	visibilities	averaged	over	frequency	and	time.	Usually	the	second,	the	third,	and
the	fourth	masks	are	the	same,	i.e.	a	common	mask	for	cross-correlation	is	used.	Autocorrelation	and	cross-correlation	masks	are	usually	different	since	different	factors	lead	to	necessity	to	mask	auto-
correlation	and	cross-correlations.

If	the	mask	for	a	given	cross-correlation	is	zero,	the	corresponding	visibility	is	replaced	with	zero.	If	the	mask	of	a	given	auto-correlation	is	zero,	the	auto-correlation	at	a	given	spectral	channel	is
computed	by	linear	interpolation	between	adjacent	channels,	or	linear	extrapolation,	if	the	masked	channel	is	at	the	edge	of	the	IF.	The	corresponding	cross-correlation	is	not	affected.	Very	often	strong
unmasked	spurious	signals	that	results	in	autocorrelation	greater	than	2–5	of	the	average	level	usually	affect	the	cross-correlation	as	well.	Therefore,	it	is	prudent	first	to	mask	out	strong	spurious	signals
at	autocorrelation	and	then	check	cross-correlation	spectrum.

An	analyst	may	create	the	mask	file	by	hand,	but	this	is	a	tedious	work.	PIMA	supports	so-called	bandpass	mask	definition	files	that	allows	to	specify	the	spectral	channels	that	are	to	be	suppressed	in	a

concise	way.	The	bandpass	mask	definition	file	allows	to	define	ranges	of	the	spectral	channels	that	are	to	be	mask	out.	An	analyst	edits	the	bandpass	mask	definition	file,	converts	it	to	the	bandpass
mask,	visualizes	the	cross-	and	auto-	phase	and	amplitude	spectra,	and	repeat	this	procedure	till	a	satisfactory	result	is	produced.

A	bandpass	mask	definition	file	consists	of	records	of	variable	length.	The	first	record	identifies	the	format.	It	should	always	be	be	#	PIMA	BPASS_MASK_GEN	v	0.90	2009.02.05	Lines	that	start	with
'#',	except	the	first	one,	are	considered	to	be	comments,	and	the	parser	ignores	them.	Mask	definition	records	consists	of	8	words	separated	by	one	or	more	blanks	mmmm	STA:	ssssssss	IND_FRQ:	aa-
bb	IND_CHN:	xx-yy	ddd

where	mmmm	is	the	mask	type:	one	of	AUTC	(autocorrelation	mask),	BPAS	(bandpass	mask),	FRNG	(fringe	fitting	mask),	SPLT	(split	mask),	CROS	(bandpass+fringe_fitting+split	masks),	ALL	(all	masks:
autocorrelation+bandpass+fringe_fitting+split)	sssssss	is	the	station	name,	aa	is	the	index	of	the	first	IF	of	the	range,	bb	is	the	index	of	the	last	IF	of	the	range,	xx	is	the	index	of	the	first	spectral	channel
in	a	given	IF	range	and	yy	is	the	index	of	the	last	spectral	channel	in	a	given	IF	range;	ddd	is	disposition:	ON	or	OFF.	Station	name	may	be	substituted	by	ALL,	what	means	the	definition	affects	all	stations.

The	first	definition	sets	the	default	disposition:	ON	or	OFF.	Unless	you	have	really	pathological	experiment	and	you	have	to	disable	the	majority	of	spectral	channels,	the	first	definition	is	ALL	STA	ON,
what	means	to	enable	all	spectral	channels	The	definitions	are	processed	consecutively.	Each	new	definition	alters	the	mask	defined	by	priori	definitions.	Here	is	an	example:

#	PIMA	BPASS_MASK_GEN		v	0.90	2009.02.05
#
#		Control	for	bandpass	mask	generation	for	VLBI	experiment	BP192B3
#
#		Created	on	2015.11.14_12:33:11
#
ALL				STA:			ALL									ON
#
ALL				STA:			ALL									IND_FRQ:			3-3				IND_CHN:	121-129			OFF
CROS			STA:			KP-VLBA					IND_FRQ:			1-2				IND_CHN:			1-512			OFF
AUTC			STA:			FD-VLBA					IND_FRQ:			4-4				IND_CHN:	431-436			OFF

The	first	line	identifies	the	format.	The	first	non-comment	line	sets	the	initial	mask	1.	The	second	non-comment	lines	disables	both	autcorrelations	and	cross-correlations	for	the	IF	#3,	spectral	channels
121	through	129.	The	third	line	disables	cross-correlation	in	IFs	#1	and	#2	(that	experiment	has	512	spectral	channels	per	IF)	for	station	KP-VLBA.	The	fourth	line	disables	autocorrelation	for	FD-VLBA	in
spectral	channels	from	431	through	436	in	IF	#4	keeping	autocorrelation.

Creation	complex	bandpass	in	the	inspection	mode

Task	bpas	compute	complex	band-pass.	This	task	supports	4	modes:	INSP	(inspection),	INIT	(initial),	ACCUM	(accumulation),	and	FINE.	Modes	INIT	and	INSP	differs	only	by	the	generated	output:	bpas	in
INSP	mode	generates	plots,	while	bpas	in	INIT	mode	does	not.

Task	bpas	takes	as	input	result	of	fringe	fitting.	In	general,	it	is	not	required	to	have	fringe	fitting	results	for	all	observations,	although	it	is	desirable.	PIMA	will	find	n	observations	with	the	highest	SNR	at
each	baseline	with	the	reference	station	and	will	compute	the	complex	bandpass	using	these	observations.	PIMA	uses	one	observation	with	the	highest	SNR	per	baseline	in	INIT	or	INSP	mode.	It	may
happen	that	just	the	observation	with	the	highest	SNR	is	affected	by	RFI	or	has	another	problems.	In	such	a	case	affected	observation	can	be	added	into	the	exclude	list.

In	a	case	of	dual-polarization	observations	two	bandpasses	are	computed:	for	RR	polarization	and	for	difference	LL	minus	RR	polarization.	The	second	bandpass	is	called	polarization	bandpass.	The	main
bandpass	is	RR	for	single-polarization	RR	data,	LL	for	single-polarization	LL	data,	and	RR	for	dual-polarization	data.	In	order	to	compute	both,	main	RR	bandpass	and	polarization	bandpasses,	task	bpas
should	be	executed	with	POLAR:	I.

Wrapper	pf.py	simplifies	generation	of	the	bandpass.	It	checks	exclusion	file	VVVVV/EEE/EEE_B_bpas_obs.exc.	If	it	does	not	find	such	a	file,	the	wrapper	creates	an	empty	file	with	a	comment	line.	It
supports	option	-insp	that	overrides	value	of	BPS.MODE.

	Usage:	pf.py	exp	band	obs	[-insp]

When	PIMA	task	bpas	is	invoked	in	the	INSP	mode,	PIMA	runs	a	cycle	over	baselines	with	the	reference	station	and	computes	amplitude	and	phase	bandpasses	for	an	observation	with	the	highest	SNR
among	selected	observations	of	each	baseline	with	the	referenced	station.	It	displays	two	plots	per	baseline:	amplitude	plot	and	phase	plot.	An	amplitude	plots	shows	three	function:	autocorrelation	(red),
cross-correlation	normalized	to	unity	(blue)	and	the	bandpass	(green).	The	phase	plot	shows	residual	phase	(blue)	and	phase	bandpass	(green).

When	computing	bandpass,	PIMA	re-runs	fringe	fitting	for	the	selected	observation.	Blue	lines	in	the	amplitude	and	phase	plots	show	just	residual	amplitudes	and	phases	from	that	fringe	fitting.	Then	a
smooth	curve	is	fitted	to	the	residuals.	PIMA	supports	two	algorithms:	fitting	with	a	smoothing	spline	of	the	3rd	degree	over	n	equi-distant	knots	or	with	a	Legendre	polynomial	of	degree	b.	The
smoothing	methods	should	be	the	same	for	phase	and	amplitude,	but	the	degree	of	the	Legendre	polynomial	or	the	number	of	knots	for	the	spine	can	be	different	for	amplitude	and	phase.

Smoothing	mode	is	defined	by	keyword	BPS.INTRP_METHOD.	It	can	take	values	SPLINE,	LEGENDRE,	or	LINEAR.	Phase	initial	bandpass	is	the	smoothed	model	bandpass	with	opposite	sign.	The	phase
bandpass	is	normalized	to	have	the	mean	phase	over	the	band	zero.	PIMA	will	unwrap	phase	if	phase	bandpass	exceeds	±π/2.	Amplitude	bandpass	is	normalized	to	unity.	If	BPS.NORML:	IF,	then	the
amplitude	bandpass	is	analyzed	over	each	IF	separately.	If	BPS.NORML:	BAND,	then	the	amplitude	bandpass	is	normalized	over	the	band.	Which	mode	to	use?	That	depends	on	hardware.	If	system
temperature	is	measured	for	entire	band,	then	normalization	should	be	made	over	the	band.	If	system	temperature	is	measured	at	each	IF	(or	pairs	of	IFs)	individually,	than	normalization	over	IF	should
be	used.	Autocorrelation	is	always	normalized	over	IF.

PIMA	task	bpas	in	the	inspection	mode	displays	two	plots	per	baseline:	amplitude	bandpass	and	phase	bandpass.	Reading	these	plots	is	an	important	skill.	An	analyst	should	identify	spikes	in
autocorrelation	amplitudes	and	mask	them	out.	To	identify	a	spike	in	autocorrelation,	first	set	color	index	3	by	hitting	C	and	3,	then	move	the	cursor	close	to	the	spike	and	hit	LeftMouse	button.	Dump	file
SSSSS/pima/EEE.frq	helps	to	identify	an	IF/channel	indices.	Using	this	information,	an	analyst	adds	a	record	in	the	mask	definition	file.	There	is	no	firm	rule	when	a	spike	should	be	mask	out.	Usually
spikes	with	amplitudes	greater	than	2	should	be	mask	out,	and	those	with	amplitudes	in	a	range	[0.8,	1.2]	are	kept.	After	all	spikes	in	autocorrelation	are	mask	out,	a	mask	should	be	generated	from	the
mask	definition	file	using	task	bmge.	Task	bmge	requires	qualifier	mask_gen	with	the	value	mask	definition	file.	After	than	inspection	of	autocorrelation	amplitudes	should	be	repeated.	NB:	Amplitude	of
masked	autocorrelation	is	set	to	zero.	If	necessary,	mask	definition	file	should	be	edited,	mask	re-generated,	and	the	procedure	repeated.

After	cleaning	autocorrelation	spectrum,	cross	correlation	should	be	cleaned.	Several	situations	are	rather	common:

1.	 There	is	no	signal	in	one	or	more	IFs	mainly	due	to	hardware	error	or	errors	in	the	setup.	These	IFs	should	be	masked	out	entirely.

2.	 Cross-correlation	amplitude	in	one	or	more	IF	is	lower	than	in	others.	These	IFs	may	be	masked	out	depending	how	strongly	the	amplitude	is	down.	If	the	amplitude	is	lower	by	a	factor	of	4–6,	such
an	IF	brings	more	noise	than	signal	and	probably	should	be	mask	out.	Masking	out	an	IF	with	the	amplitude	less	than	1.5	times	will	degrade	the	SNR	and	deteriorate	the	result.	Amplitude	loss	in	a
range	1.5–5	is	the	border	line.

3.	 A	significant	portion	of	an	IF	has	low	amplitude.	This	may	be	caused	by	RFI	or	the	receiver	bandpass	shape.	It	is	recommended	to	masked	out	that	portion	of	the	bandpass.

4.	 Amplitude	at	the	edge	of	each	IF	is	low.	This	is	the	most	common	situation.	This	is	caused	by	the	hardware.	A	general	recommendation	to	mask	out	a	portion	of	the	band	that	is	below	some	threshold
in	a	range	of	0.05%ndash;0.2.

A	hint:	task	bpas	in	the	inspection	mode	processes	baselines	in	the	alphabetic	order.	If	a	certain	station	requires	heavy	editing	the	bandpass	generation	file,	you	can	run	the	task	with	OBS:	num_obs
qualifier,	there	num_obs	is	the	index	of	the	observation	with	the	highest	SNR	at	the	baseline	of	interest.

Task	bpas	supports	keyword	BPS.AMP_MIN	that	defines	the	threshold	on	the	fringe	amplitude	as	the	share	of	mean	amplitude	over	the	IF.	Spectral	channels	with	the	amplitude	threshold	below
BPS.AMP_MIN	are	ignored	by	task	bpas.	The	bandpass	to	these	channels	is	obtained	by	extrapolation	from	those	channels	that	are	in	use.	This	may	be	useful	if	the	bandpass	has	strong	changes	at
channels	with	low	amplitude,	since	in	that	case	smoothing	with	Legendre	polynomial	and	spline	may	not	be	robust.

Phase	may	become	too	noisy	in	experiment	with	high	spectral	resolution.	In	that	case	the	residuals	should	be	coherently	averaged.	The	number	of	spectral	channels	averaged	within	an	individual
segment	is	defined	by	keyword.	Value	1	stands	for	no	averaging.	A	balance	between	averaging	and	spectral	resolution	should	be	maintained.	From	one	hand	strong	averaging	(high	value	of
BPS.MSEG_ACCUM)	results	in	less	random	noise	in	phase.	From	the	other	hand,	averaging	reduces	spectral	resolution	and	our	ability	to	model	the	system	response	as	a	function	of	frequency.	Scatter
greater	than	1–2	rad	may	result	in	a	failure	to	resolve	phase	ambiguity	across	an	IF,	which	will	lead	to	a	wrong	result.	A	general	guideline	is	to	select	such	averaging	that	the	scatter	of	residual	phases	with
respect	to	a	smooth	line	be	in	a	range	of	0.05–0.2	rad	for	the	sources	used	for	bandpass	computation.

Interpolation	of	the	bandpass	is	important.	In	the	simplest	form	the	bandpass	is	just	reciprocal	to	the	normalized	complex	cross-correlation	function	of	the	observation	with	the	highest	SNR	at	a	given
baseline.	If	the	SNR	of	that	observation	were	infinitely	high,	this	would	have	been	the	optimal	approach.	However,	when	we	apply	the	bandpass	computed	by	inversion	of	the	normalize	dd	complex	cross-
correlation	function	of	an	observation	with	finite	SNR,	we	propagate	the	noise	of	that	observation	to	other	observations,	which	results	in	an	increase	of	the	total	noise.	To	alleviate	undesirable	noise
propagation,	we	1)	use	more	than	one	observation	for	computing	band	pass,	2)	coherently	average	n	adjacent	visibilities;	3)	smooth	the	bandpass	with	polynomial	or	splines.

The	choice	of	the	magnitude	of	coherent	averaging	and	the	degree	of	the	polynomial	or	the	number	of	spline	knots	depends	both	on	the	SNR	and	the	number	of	spectral	channels	in	the	IF.	The	higher	SNR

of	the	observations	used	for	bandpass	computation,	the	better,	although	the	quantitative	measure	of	whether	a	given	SNR	is	high	enough	is	rather	subjective.	Observations	with	SNR	200–2000	allows	to
compute	a	rather	reliable	bandpass	with	the	number	of	spline	knots	7–20	(In	general	Legendre	polynomials	of	degree	higher	than	5–7	are	undesirable	since	they	are	prone	to	end	up	with	bandpass	of
wiggling	shape	like	a	dinosaur's	spine).

A	wise	principal	investigator	will	insert	enough	strong	calibrators	to	make	computation	of	the	bandpass	robust,	but	sometimes	either	the	PI	did	not	think	well,	or	observations	of	strong	calibrators	failed,
or	their	were	not	possible,	for	instance	for	space	VLBI.	In	that	case	we	have	to	compute	bandpass	using	weak	calibrators.	When	observations	with	SNR	in	a	range	30–100	are	used	care	must	be	taken	to
generate	a	robust	bandpass.	First,	it	should	be	checked	that	the	scatter	of	the	residual	phases	of	the	observations	used	for	bandpass	compilation	is	smaller	π/3–π/6^ndash	and	phase	ambiguities	can	be
reliable	resolved.	If	an	error	in	ambiguity	resolution	will	happen,	it	will	strongly	poison	a	bandpass:	such	a	bandpass,	when	applied,	will	degrade	the	SNR,	not	improve	it.	To	mitigate	phase	ambiguity
resolution,	the	residual	cross-correlation	is	coherently	averaged	(keywords	BPS.MSEG_ACCUM	and	BPS.MSEG_FINE).	Second,	the	degree	of	the	smoothing	polynomial	or	the	number	of	spline	knots	is
reduced.

Finally,	when	the	bandpass	has	to	be	computed	using	the	very	weak	observations	with	the	SNR	7–20,	BPS.INTRP_METHOD:	LINEAR	is	used	as	the	last	resource.	This	mode	requires	BPS.MSEG_ACCUM
and	BPS.MSEG_FINE	be	equal	to	half	of	the	number	of	spectral	channels	and	BPS.DEG_AMP:	0	and	BPS.DEG_PHS:	1.	In	this	mode	the	cross-spectrum	is	coherently	averaged	to	two	points	per	IF.	The
amplitude	bandpass	is	computed	as	the	IF-averaged	level.	The	phase	bandpass	is	computed	as	a	linear	function	over	two	points.	This	mode	is	the	most	robust,	but	it	does	not	model	the	more	grained
shape	of	the	bandpass.	This	omission	is	not	essential	for	low-SNR	observations.	According	to	the	reciprocity	principle	omission	in	the	data	reduction	of	a	quantity	that	cannot	be	reliably	determined	from
observations	cannot	significantly	degrade	goodness	of	the	fit.	From	the	other	hand,	using	BPS.INTRP_METHOD:	LINEAR	for	experiments	with	higher	SNR	observations	may	results	in	worse	result	with
respect	to	BPS.INTRP_METHOD:	LEGENDRE	or	SPLINE.	The	natural	low	limit	of	observations	used	for	bandpass	generation	in	BPS.INTRP_METHOD:	LINEAR	mode	is	the	detection	limit.	Inadvertent
inclusion	of	a	non-detection	to	the	list	of	observations	used	for	bandpass	generation	will	significantly	degrade	the	bandpass.	Better	use	no	bandpass	than	a	wrong	bandpass.

When	the	analyst	is	satisfied	with	plots	that	task	bpas	generates	in	the	inspection	mode,	an	analyst	runs	bpas	task	in	the	non-interactive	mode	to	generate	the	final	bandpass.	There	are	three	modes	for
computation	of	the	bandpass:	INIT,	ACCUM,	and	FINE.	PIMA	computes	the	residual	visibilities	averaged	over	time	with	parameters	of	fringe	fitting	applies.	In	the	INIT	mode	PIMA	picks	up	for	each
baseline	the	observation	with	the	highest	SNR	among	the	observations	with	the	reference	stations	that	are	subject	of	filter	OBS,	INCLUDE_OBS,	and	EXCLUDE_OBS	keywords.	It	normalizes	the	amplitude
to	have	the	mean	value	to	unity	either	over	the	IF	or	over	the	band	depending	on	BPS.NORML	keyword.	The	residual	phase	is	normalized	to	have	mean	value	and	mean	rate	to	zero	over	the	bandwidth
regardless	of	the	value	of	BPS.NORML.	PIMA	smooths	the	residual	phases	and	residual	amplitudes	and	the	inverts	them:	flips	the	sign	of	phase	band	pass,	replaces	the	residual	amplitude	with	the
quantity	reciprocal	to	that	for	each	spectral	channel,	and	combines	them	to	form	array	of	complex	numbers.	These	quantities	are	called	initial	complex	bandpass.

Initial	bandpass	is	computed	using	only	one	observation	per	baseline.	If	an	analyst	selected	BPS.MODE:	INIT,	the	task	bpas	stops	here.	If	a	user	selected	ACCUM	or	FINE	mode	PIMA	selects	N
observations	per	baseline	with	the	highest	SNR	beyond	that	that	was	used	in	the	INIT	mode.	It	applies	the	initial	bandpass	determine	residual	phases	and	amplitudes	and	averages	them	out.	It	reverses
sign	of	residual	phases,	replaces	normalized	residual	amplitudes,	combines	them	in	the	array	of	complex	numbers	and	multiplies	it	by	the	initial	bandpass.	The	result	is	called	accumulated	bandpass.	The
number	of	observations	per	baseline	used	for	computation	of	the	accumulation	bandpass	is	controlled	by	two	parameters:	BPS.NOBS_ACCUM	and	BPS.SNR_MIN_ACCUM.	PIMA	will	select	up	to
BPS.NOBS_ACCUM	observations	for	each	baseline	with	the	highest	SNR,	not	counting	the	observation	used	for	computation	of	the	initial	bandpass,	provided	they	SNR	is	BPS.SNR_MIN_ACCUM	or	above.
The	advantage	of	the	accumulation	bandpass	is	that	it	is	unweighted	average	over	N	observations,	and	therefore,	it	accounts	to	some	degree	bandpass	variation.	If	a	user	selected	ACCUM	mode	PIMA
task	bpas	stops	here.

If	a	user	chooses	FINE	bandpass	computation	mode,	PIMA	selects	K	observations	per	baseline	with	the	highest	SNR	beyond	that	that	was	used	in	the	INIT	mode.	It	applies	accumulation	bandpass	and
forms	the	system	of	linear	equations	for	adjustment	to	parameters	of	the	model	for	the	phase	bandpass	and	logarithm	of	the	amplitude	bandpass,	i.e.	either	coefficients	of	Legendre	polynomial	or	B-
spline.	It	solves	the	system	using	weighted	least	squares	with	weights	proportional	to	fringe	amplitude.	Then	it	computes	residual	phases	and	amplitude	corrections,	computes	their	statistics,	and	if	the
statistics	exceed	the	specified	threshold,	it	discards	the	observations	with	the	greatest	residual	and	repeats	computation	until	either	the	statistics	become	lower	than	the	threshold	or	the	number	of
rejected	observations	per	baseline	reaches	the	specified	limit.

Keyword	BPS.SNR_MIN_FINE	specifies	the	minimum	SNR.	Observations	with	SNR	below	that	limit	are	not	used	by	PIMA	for	bandpass	computation	in	the	FINE	mode.	Keyword	BPS.NOBS_FINE	specifies
the	number	of	observations	with	the	highest	SNR	per	baseline	that	PIMA	selects	for	bandpass	computation	in	the	FINE	mode,	provided	their	SNR	is	no	less	than	BPS.SNR_MIN_FINE.	If	a	given
observation	has	residual	statistics	above	the	threshold,	PIMA	will	discard	it	provided	the	number	of	remaining	used	observations	is	no	less	than	BPS.MINOBS_FINE.	This	mechanism	prevents	rejection	of
too	many	observations.

After	performing	the	first	iteration	of	LSQ	adjustment,	PIMA	computes	for	each	IF	weighted	rms	of	residual	phases	and	normalized	residual	amplitudes.	Then	PIMA	finds	an	observation	with	maximum
phase	and	maximum	amplitude	residual.	If	the	rms	of	phase	residual	exceeds	BPS.PHAS_REJECT	radians,	that	observation	is	marked	for	rejection.	If	the	rms	of	normalized	amplitude	residuals	exceeds
BPS.AMPL_REJECT,	that	observation	is	marked	for	rejection.	If	the	number	of	used	observations	still	exceeds	BPS.MINOBS_FINE,	the	observation	is	rejected,	and	the	next	iteration	runs.	PIMA	maintains
two	counters	of	used	observations:	for	the	phase	bandpass	and	for	the	amplitude	bandpass.	An	observation	may	be	rejected	for	amplitude	bandpass	but	kept	for	phase	bandpass,	or	vice	versus,	or
rejected	for	both	amplitude	and	phase	bandpasses.

PIMA	task	bpas	prints	valuable	statistics	when	DEBUG_LEVEL:	3	or	higher.	An	analyst	should	always	examine	it.	Lines	that	starts	with	"BPASS	Removed"	are	especially	important.	If	there	are	many
rejected	observations	at	a	given	baseline,	especially	if	their	phase	or	amplitude	rms	of	residuals	is	large,	an	analyst	should	examine	these	observations:	to	run	a	trial	fringe	fit	and	look	at	residuals.	Bad
observations	may	skew	bandpass	evaluation,	so	it	may	be	necessary	to	examine	residuals	with	and	without	applying	bandpass	(BANDPASS_USE:	NO).	One	of	the	reasons	of	computing	bandpass	in	FINE
mode	is	to	find	observations	with	large	residual	phases	or	residual	amplitudes.

It	may	happen	that	a	fraction	of	high	SNR	observations	are	affected	by	hardware	failure	or	RFI.	If	bpas	task	does	not	reject	them,	they	skew	the	estimate	of	bandpass.	There	is	another	mechanism	to	get
rid	of	such	observations	for	bandpass	computation:	to	put	them	in	the	exclude	list.	PIMA	wrapper	pf.py	automatically	checks	file	VVVVV/EEE/EEE_B_bpas_exc.obs.	If	it	exists,	it	adds	option
EXCLUDE_OBS:	VVVVV/EEE/EEE_B_bpas_exc.obs,	i.e.	excludes	them	from	participation	in	bandpass	computation.

PIMA	task	bpas	assumes	bandpass	is	stable.	It	may	happen	one	or	more	jumps,	f.e.	due	to	power	failure.	In	that	case	PIMA	will	reject	many	observations.	At	the	moment,	PIMA	does	not	have	a
capability	to	accommodate	a	jump.	A	workaround	is	to	process	two	portions	of	the	experiment	separately	by	specifying	observation	lists	using	INCLUDE_OBS_FILE,	EXCLUDE_OBS_FILE	or	OBS
keywords.	If	a	given	station	has	more	than	2–3	jumps	in	bandpass,	it	should	be	discarded	and	station	staff	should	be	alerted.

If	there	are	many	rejected	observations	an	analyst	may	a)	mask	out	bad	channels	b)	add	offending	observations	to	the	exclude	list;	c)	exclude	a	list	of	observations;	d)	discard	a	station;	e)	ignore	it.

In	a	case	of	dual-polarization	data	when	POLAR:	I	is	specified,	the	procedure	is	repeated	twice:	first	for	the	RR	polarization	bandpass	second	for	the	LL	polarization	with	respect	to	the	RR	polarization
data.	Therefore,	a	trial	fringe	fit	with	bandpass	applied	should	run	three	times:	with	RR	polarization,	with	LL	polarization,	and	with	I	polarization.	If	the	polarization	bandpass	was	computed	perfectly,

then	SNR	at	I	polarization	should	be	√		SNR2RR	+	SNR2LL	SNR	reduction	2–5%	with	respect	to	the	expression	above	is	rather	common,	though	if	the	SNR	at	I	polarization	is	more	than	10%	worse,	this
indicates	a	problem	that	should	be	investigated.

A	general	recommendation	is	to	run	trial	fringe	fitting	for	5–7	observations	that	are	marked	as	"removed"	in	the	log	file	of	bpas	task	with	an	without	bandpass	applied	in	order	to	familiarize	with	the
data.	If	fringe	plots	look	satisfactory,	the	next	step:	fringe	fitting	in	the	fine	mode	should	be	done.	Otherwise,	masking,	deselection	of	bad	observations,	phase	calibration	disabling/enabling	should	be
repeated.	NB:	computation	of	bandpass	should	be	repeated	if	a)	bandpass	or	phase	cal	bandpass	mask	was	changed	or	b)	treatment	of	phase	calibration	was	changed.

Running	fine	fringe	fitting

Fine	fringe	fitting	is	the	main	task.	During	coarse	fringe	fitting,	the	fine	fringe	search	procedure	is	disabled	in	order	to	speed	up	the	process,	and	the	bandpass	was	not	applied.	During	fine	fringe	search
this	simplification	is	lifted.

PIMA	task	frib	performs	fringe	fitting.	Wrapper	pf.py	is	called	as

	Usage:	pf.py	exp	band	fine

PIMA	task	frib	creates	two	ascii	output	files	defined	in	keywords	FRINGE_FILE	and	FRIRES_FILE.	The	first	file	keeps	results	of	fringe	fitting	and	it	is	used	by	other	tasks.	The	latter	file	with	fringe	fitting
residuals	is	for	informational	purposes	only.

NB:	wrapper	pf.py	by	default	overwrites	the	files	with	fringe	results	if	it	exists.	Wrapper	option	-keep	prevents	overwriting	the	file	with	fringe	results	and	fringe	residuals	specified	in	the	control	file.
PIMA	tasks	that	reads	results	of	fringe	fitting,	f.e.	mkdb	or	splt,	processes	the	fringe	file	sequentially.	If	there	is	more	than	one	record	for	a	given	observation,	the	latest	record	takes	the	precedence.

There	is	a	number	of	parameters	that	controls	fringe	fitting.

Keyword	FRIB.SEARCH_TYPE	is	always	2FFT	that	means	a	two-dimensional	Fast	Fourier	Transform	runs	at	the	coarse	fringe	fitting	step.

The	visibility	data	are	sampled	at	a	uniform	grid	with	a	step	over	time	and	frequency.	The	steep	over	frequency	is	equal	to	the	spectral	resolution	times	FRIB.OVERSAMPLE_MD.	The	step	over	time
is	equal	to	the	accumulation	period	length	(time	resolution)	times	FRIB.OVERSAMPLE_RT.	When	oversampling	factor	1	is	used	the	amplitude	estimated	during	the	coarse	fringe	fitting	step	may	be
underestimated	by	a	factor	of	2.4	and	a	weak	source	may	be	missed.	When	the	oversampling	factors	are	4,	the	maximum	amplitude	underestimation	during	coarse	fringe	fitting	step	is	only	5%.
Therefore,	it	is	recommended	to	use	FRIB.OVERSAMPLE_MD:	4	and	FRIB.OVERSAMPLE_RT:	4.	PIMA	pads	grid	elements	that	do	not	have	visibility	data	with	zeroes.

PIMA	uses	library	FFTW	for	performing	two-dimensional	multi-threaded	FFT.	Library	FFTW	requires	some	customization	in	order	to	reach	maximum	performance.	It	uses	configuration	file	called
"wisdom	file"	in	FFTW	documentation.	This	configuration	file	should	be	created	before	running	PIMA.	Package	fourpack	that	is	required	for	building	PIMA	contains	program	create_fftw_plan.

Usage:	create_fftw_plan					

where	method	is	one	of	MEASURE	of	PATIENT,	num_threads	is	the	number	of	threads,	request_file	is	the	file	with	dimension	definitions	and	plan_file	is	the	output	configuration	file.	PIMA	supplies
two	configuration	files	pima_wis_big.inp	and	pima_wis_small.inp	.	They	can	be	found	in	$PIMA_DIR/share/pima/	directory,	where	PIMA_DIR	is	the	environment	variable	of	the	directory	where
PIMA	has	been	installed.	It	is	suggested	to	use	pima_wise_big.inp	unless	you	have	less	than	12	Gb	memory.	In	that	case	you	should	use	pima_wise_small.inp,	but	you	will	not	be	able	to	process
efficiently	wide	field	VLBI	experiments	with	high	spectral	and	temporal	resolution.	FFTW	configuration	file	depends	on	the	number	of	threads.	If	you	generated	the	FFTW	configuration	file	for	N
threads,	but	run	PIMA	with	K	threads,	the	configuration	file	will	not	be	used.	PIMA	will	run,	but	much	slower	(a	factor	of	2–5).	Therefore	you	have	to	create	several	plans	files	for	different	number
of	threads.	Usually,	you	use	the	same	number	of	threads	as	the	number	of	cores,	but	you	may	want	to	reduce	the	number	of	threads	if	you	run	PIMA	on	a	busy	server).	FFTW	supports	several
methods	for	computing	the	best	configuration	file.	Method	MEASURE	is	recommended.	Method	PATIENT	is	supposed	to	improve	performance,	but	it	may	take	several	days	to	compute	it.	Examples:

									create_fftw_plan	MEASURE	1	$PIMA_DIR/share/pima/pima_wis_big.inp	
																										$PIMA_DIR/share/pima/pima_big_measure_1thr.wis

									create_fftw_plan	MEASURE	12	$PIMA_DIR)/share/pima/pima_wis_big.inp	
																										$PIMA_DIR/share/pima/pima_big_measure_12thr.wis

PIMA	keyword	FFT_CONFIG_FILE	defines	the	FFTW	configuration	file.	Keyword	FFT_METHOD	defines	the	method	that	was	used	for	generation	of	that	file	(MEASURE	or	PATIENT).	Keyword
NUM_THREADS	sets	the	number	of	threads	that	PIMA	uses	for	FFTW	and	some	other	parallel	operations.	The	FFTW	configuration	file	should	be	generated	with	the	same	number	of	threads	and	the
same	FFTW	method,	otherwise	PIMA	performance	will	be	seriously	degraded.

After	computing	two-dimension	Fourier	transform	of	visibilities,	PIMA	searches	for	a	maximum	in	the	result	of	the	transform.	There	are	for	keywords	that	define	the	rectangular	search	window.
Keywords	FRIB.DELAY_WINDOW_CENTER	and	FRIB.RATE_WINDOW_CENTER	define	the	center	of	the	window.	Units	are	seconds	for	delay	window	and	dimensionless	for	delay	rate.	Keywords
FRIB.DELAY_WINDOW_WIDTH	and	FRIB.RATE_WINDOW_WIDTH	defines	the	semi-width	of	the	search	window	with	respect	to	the	center.	The	total	width	is	twice	wider	over	each	dimension.	A
negative	number	sets	the	search	window	to	the	total	length	of	the	transform	over	that	dimension.	For	example,	FRIB.DELAY_WINDOW_WIDTH:	-1	and	FRIB.RATE_WINDOW_WIDTH:	-1	means	to
search	for	fringes	in	the	entire	space	that	is	defined	as	1/spectral_resolution	and	Fref/observation_duration	where	Fref	is	the	reference	frequency.

If	you	do	not	know	group	delay	and	delay	rate	of	your	observation,	you	need	to	search	for	fringes	in	the	entire	area	of	the	Fourier	transform.	This	is	a	usual	situation	at	the	first	iteration	of	data
processing.	After	completion	of	the	first	iteration,	you	may	be	able	to	predict	group	delay	and	phase	delay	rate.	In	that	case	you	may	want	to	restrict	the	search	window	and	re-run	fringe	fitting	with
a	narrow	window.	This	procedure	is	called	re-fringing.	Re-fringing	with	a	narrow	window	is	usually	done	for	two	reasons:	a)	to	guide	PIMA	to	pick	up	the	main	peak	of	the	averaged	visibilities	that
may	appear	to	have	a	lower	amplitude	than	the	secondary	peaks	due	to	phase	noise;	b)	to	detect	weaker	sources.	The	probability	of	a	falls	detection	at	a	given	SNR	is	less	when	the	search	is	done	in
the	narrow	window.	The	gain	in	the	detection	limit	can	reach	30%.

There	are	several	keywords	that	affect	amplitude	but	do	not	affect	estimation	of	group	delay	an	phase	delay	rate.	Keyword	FRIB.AUTOCORR_CALIB	defines	the	algorithm	for	autocorrelation
normalization.	A	recommended	choice	is	SQRT_MEA,	which	means	to	divided	the	cross	correlation	by	the	square	root	of	the	products	of	mean	autocorrelation	across	each	IF	after	applying	a
digitization	correction.	If	a	user	want	to	maintain	compatibility	with	AIPS,	value	SQRT_KOG	can	be	used.	It	differs	from	SQRT_MEA	by	the	algorithm	for	digitization	correction.	From	the	point	of
view	of	PIMA	developer,	SQRT_KOG	algorithm	is	incorrect,	but	the	differences	are	usually	in	a	range	of	0.5–3%,	which	is	insignificant.

Keyword	FRIB.AMPL_FUDGE_TYPE	controls	fudge	factor	correction.	Supported	values	are	VLBA,	KOGAN,	DIFX	and	NO.	If	your	experiment	has	been	correlated	by	the	hardware	NRAO	correlator,
you	should	specify	either	VLBA	or	KOGAN.	Then	a	specific	fudge	factor	to	take	into	account	register	saturation	in	the	hardware	correlator	is	applied.	Basically	you	have	to	tell	PIMA	your	data	have
been	processed	with	the	hardware	correlator	since	there	is	no	reliable	way	to	learn	it	from	the	data	themselves.	The	difference	between	is	VLBA	and	KOGAN	is	that	in	the	latter	case	all	weights	are
considered	to	be	1	when	correction	is	applied.	Values	DIFX	or	NO	mean	no	fudge	factor	should	be	applied.

Fringe	amplitude	decays	linearly	with	an	increase	residual	group	delay.	The	attenuation	factor	reaches	0.5	when	the	residual	group	delay	reaches	a	quantity	reciprocal	to	the	spectral	resolution.
FRIB.AMPL_EDGE_WINDOW_COR	keyword	instructs	PIMA	to	compensate	this	attenuation.	You	should	specify	its	value	USE,	unless	you	have	a	strong	argumentation	against	it.

Keyword	FRIB.AMPL_EDGE_BEAM_COR	instructs	PIMA	to	apply	(YES)	or	not	to	apply	(NO)	a	correction	for	beam	attenuation.	It	is	assumed	you	know	source	positions	with	accuracy	1"	or	better
and	used	this	a	priori	coordinates	in	the	catalogue	when	you	loaded	PIMA.	PIMA	has	a	table	with	measured	beam	factors	for	ATCA	and	VLA	antennas.	For	all	other	antennas	it	scales	the	VLA	beam
pattern	using	antenna	diameter.	It	is	recommended	to	use	value	YES.

PIMA	discards	visibilities	with	low	weights.	Two	keywords	FRIB.AUTOCORR_THRESHOLD	and	FRIB.AUTOCORR_THRESHOLD	specify	the	low	threshold	for	autocorrelation	and	cross-correlation
weights.	Typically,	normal	weights	are	1	and	the	thresholds	0.2	are	recommended.	Weights	below	that	threshold	usually	means	failures.	However,	sometimes	weights	for	normal	visibilities	are	low.
In	that	case	thresholds	0.2	may	force	PIMA	to	discard	all	the	data.	In	that	case	an	analyst	may	try	to	reduce	values	of	keywords	FRIB.AUTOCORR_THRESHOLD	and	FRIB.AUTOCORR_THRESHOLD.

Keyword	FRIB.NOISE_NSIGMA	controls	computation	of	the	noise.	After	fringe	fitting	PIMA	selects	randomly	32768	samples	of	the	Fourier	transform,	orders	them	in	decreasing	their	amplitudes,
and	computes	the	rms.	Then	it	runs	iterative	procedure	of	excluding	samples	with	amplitudes	greater	than	FRIB.NOISE_NSIGMA.	After	excluding	each	sample,	the	rms	is	updated.	Usually,	value	3.5
is	optimal.

PIMA	checks	the	value	of	the	keyword	FRIB.SNR_DETECTION	and	sets	and	advisory	flag	whether	the	was	a	detection.	Depending	on	a	size	of	the	fringe	search	window,	the	detection	limit	is	in	a
range	of	4.8–5.8	(less	for	a	smaller	window).	NB:	PIMA	does	not	check,	whether	the	source	has	been	actually	detected,	it	only	checks	whether	the	SNR	was	less	of	greater	than	the	specified	threshold.

PIMA	supports	several	algorithms	of	fine	fringe	search	specified	by	keyword	FRIB.FINE_SEARCH.	The	most	commonly	used	algorithm	is	LSQ.	PIMA	adjusts	phase	delay	rate,	group	delay,	and
group	delay	rate	using	least	squares	with	both	additive	and	multiplicative	reweighting.	Method	ACC	performs	a	similar	procedure,	but	it	adjusts	phase	delay	acceleration	instead	of	group	delay	rate.
This	mode	is	used	for	a	case	when	a	priori	station	position	has	a	very	large	uncertainty	that	causes	a	significant	quadratic	term	in	phase.	This	happens	mainly	when	one	of	the	elements	of	the
interferometer	is	in	space,	f.e.	RadioAstron.	Method	PAR	that	adjusts	group	delay	and	phase	delay	rate	using	parabolic	fitting	is	used	mainly	for	a	coarse	fringe	search.

PIMA	task	frib	can	generate	four	types	of	plots.	There	are	four	keywords	that	controls	the	way	how	PIMA	generates	these	plots:	FRIB.1D_RESFRQ_PLOT,	FRIB.1D_RESTIM_PLOT,
FRIB.1D_DRF_PLOT,	and	FRIB.2D_FRINGE_PLOT.	These	keywords	can	take	one	of	six	values:
1.	 NO	—	do	not	generate	a	plot;
2.	 XW	—	to	display	the	plot	in	the	current	X11	window;
3.	 PS	—	to	generate	a	plot	in	Postscript	format;
4.	 GIF	—	to	generate	a	plot	in	GIF	format;
5.	 SAV	—	to	generate	a	plot	in	DiaGI	format.	The	plot	can	be	re-displayed	with	command	diagi_rst	that	is	a	part	of	petools	package.
6.	 TXT	—	to	generate	a	table	with	columns	argument	a	value	in	a	plain	ascii	format.

A	plot	is	written	in	directory	SSSSS/EEE_fpl.

A	1D-plot	of	amplitudes	and	residual	phases	versus	frequency	is	controlled	by	the	keyword	FRIB.1D_RESFRQ_PLOT.	The	residuals	are	coherently	averaged	over	FRIB.1D_FRQ_MSEG	spectral
channels.	Averaging	is	not	needed	for	high	SNR	observations	(i.e.	FRIB.1D_FRQ_MSEG	should	be	set	to	1),	but	may	be	needed	for	lower	SNR	observations.

A	1D-plot	of	amplitudes	and	residual	phases	versus	time	is	controlled	by	the	keyword	FRIB.1D_RESTIM_PLOT.	The	residuals	are	coherently	averaged	over	FRIB.1D_TIM_MSEG	accumulation
periods.	Averaging	is	not	needed	for	high	SNR	observations	(i.e.	FRIB.1D_FRQ_MSEG	should	be	set	to	1),	but	may	be	needed	for	lower	SNR	observations.

A	1D-plot	of	amplitude	of	the	delay	resolution	function	is	controlled	by	the	keyword	FRIB.1D_DRF_PLOT.	The	delay	resolution	is	the	1D	slice	of	the	the	Fourier	transform	of	visibilities	along	the
phase	delay	found	by	fringe	fitting.	Keyword	FRIB.1D_DRF_SPAN	defines	the	span	of	the	plot	in	units	of	the	group	delay	ambiguity	spacings.	Value	1.2	is	usually	enough	to	visualize	the	DRF.	In	a
case	of	lack	of	phase	offsets	in	IFs,	the	shape	of	the	DRF	is	regular	with	low	sidelobes.	The	presence	of	phase	offsets	distorts	the	shape	of	the	DRF	and	raises	the	sidelobe	which	may	become	stronger
than	the	main	maximum.

A	2D-plot	of	fringe	amplitude	versus	group	delay	and	phase	delay	rate	is	controlled	by	the	keyword	FRIB.2D_FRINGE_PLOT.	A	portion	of	the	2D	Fourier	transform	of	visibilities	is	displayed.	Two
keywords	FRIB.PLOT_DELAY_WINDOW_WIDTH,	and	FRIB.PLOT_RATE_WINDOW_WIDTH	control	the	size	of	the	window.	Units	are	seconds	for	delay	and	dimensionless	for	delay	rate.	The	size	of
a	usable	window	is	strongly	dependent	on	the	frequency	sequence	and	duration	of	accumulation	period.	1.D-7	for	delay	and	5.D-12	delay	rate	may	be	a	reasonable	initial	choice.	The	best	values	are
selected	by	trials.

Export	data	for	astrometry/geodesy	solution

Fringe	results	can	be	transformed	to	the	form	that	astrometry/geodesy	software	Post-Solve	can	ingest.	Task	mkdb	reads	fringe	files,	fringe	residual	file,	contents	of	internal	PIMA	tables	that	are	kept	in
SSSSS/EEE.pim	file,	and	contents	of	visibility	files,	computes	scan	reference	time	(SRT),	computes	a	priori	path	delays	on	the	SRT,	computes	total	group	delays	and	phase	delay	rates	on	SRT,	sorts	them,
and	writes	them	into	database	files	in	either	binary	Geo	VLBI	Format	(GVF)	or	plain	ascii	(TEXT)	format.	In	a	case	of	dual-base	observations	it	reads	two	fringe	results	and	fringe	residual	files	for	both

bands	and	matches	them.

Basic	operations	of	this	task	are	a)	splitting	the	data	into	output	scans	with	their	reference	time;	b)computation	of	path	delay;	c)	formatting	the	output.

PIMA	performs	baseline-dependent	fringe	fitting,	and	it	processes	observations	independently.	PIMA	finds	the	fringe	reference	time	(FRT)	automatically	as	a	mean	weighted	epoch	among	used
accumulation	periods	when	FRT_OFFSET:	AUTO.	In	general,	the	FRT	is	different	even	if	all	stations	had	the	same	nominal	start	and	stop	time.	Often	VLBI	experiments	are	scheduled	in	such	a	way	that	all
stations	have	the	same	stop	time	but	different	start	time.	Geodetic	schedules	tends	to	have	chaotic	start	and	stop	time	when	different	antennas	of	the	network	have	different	start	and	stop	epochs.

PIMA	has	several	way	to	set	the	scan	reference	time.	The	algorithm	is	controlled	by	keyword	MKDB.SRT.	If	it	has	value	SRT_FRT,	then	PIMA	sets	the	SRT	the	same	as	FRT.	As	a	result	the	number	of
output	scans,	i.e.	observations	with	the	same	epoch,	tends	to	be	the	same	as	the	number	of	observations,	i.e.	each	output	scan	has	only	one	observation.	This	is	usually	undesirable.

When	MKDB.SRT:	MID_SCAN,	PIMA	consolidates	time	epochs	in	order	to	have	as	many	as	possible	observations	of	the	same	scan	to	have	the	same	epoch.	But	when	the	reference	epoch	is	moved	away
from	the	weighted	mean	epoch,	the	uncertainty	of	group	delay	increases.	PIMA	has	two	keywords	that	controls	the	interval	of	time	the	scan	reference	time	can	deviate	from	the	reference	time	for	group
delay	uncertainty	not	to	grow	too	much:	MKDB.GD_MAX_ADD_ERROR	and	MKDB.GD_MAX_SCL_ERROR.	Keyword	MKDB.GD_MAX_ADD_ERROR	specifies	the	tolerance	of	the	absolute	increase	of	the
uncertainty	in	seconds.	Keyword	MKDB.GD_MAX_SCL_ERROR	specifies	the	tolerance	of	the	increase	of	the	uncertainty	as	a	fraction	of	the	original	group	delay	uncertainty	derived	by	PIMA	task	frib.
PIMA	uses	the	smallest	of	the	these	two	tolerances.	Typical	value	of	MKDB.GD_MAX_ADD_ERROR	is	5.D-12,	typical	value	of	MKDB.GD_MAX_SCL_ERROR	is	0.2.	That	means	that	if,	for	example,	the
original	path	delay	uncertainty	is	40	ps,	the	tolerance	is	the	smallest	of	5	and	0.2*40=	8	ps,	i.e.	5	ps.	PIMA	determines	the	SRT	in	such	a	way	that	the	increase	of	the	uncertainty	within	the	tolerance	limit
be	minimal.	If	there	are	observations	that	cannot	be	combined	to	the	same	SRT,	PIMA	splits	input	scans	set	by	task	load	into	several	output	scans.

PIMA	allows	a	user	to	compute	scan	reference	time,	write	them	in	file	and	supply	the	file	name	as	the	value	of	MKDB.SRT.	This	may	be	useful	for	comparison	the	results	with	other	fringe	fitting
software.

PIMA	can	write	the	output	in	three	different	formats.	The	format	is	controlled	by	the	keyword	MKDB.OUTPUT_TYPE.	Value	TEXT	instructs	PIMA	to	generate	a	plain	ascii	output	file	with	total	group
delays,	total	phase	delay	rates	and	many	other	quantities,	one	line	per	observation.	Value	AMPL	instructs	PIMA	to	generate	a	plain	ascii	output	file	fringe	amplitude,	fringe	phase,	Tsys,	gain,	uv	baseline
projections	and	other	parameters	are	written	in	a	plain	ascii	table,	one	line	per	used	observation.	Results	in	AMPL	format	are	mainly	for	non-imaging	flux	density	analysis.	Value	GVF	instructs	PIMA	to
generates	a	database	in	binary	GVF	format.	VLBI	analysis	program	Post-Solve	for	geodesy	and	absolute	astrometry	accepts	GVF	as	input.	Therefore,	task	mkdb	provides	an	interface	between	PIMA	and
Post-Solve.

The	database	in	plain	ascii	is	not	equivalent	to	the	database	in	GVF	format:	the	GVF	database	contains	more	parameters	than	the	ascii	database.	Therefore,	the	GVF	database	can	be	converted	to	ascii,	but
reverse	transformation	is	not	feasible.

The	ascii	database	contains	parameters	for	two	bands.	If	the	observations	were	performed	only	for	one	band	or	task	mkdb	was	called	with	keyword	MKDB.2ND_BAND:	NO,	the	values	for	the	second
band	will	be	zero.	When	the	output	for	both	bands	is	available,	the	band	with	higher	reference	frequency,	thereafter	called	higher	precedes.	Path	delay	is	defined	as	the	difference	of	two	intervals	of
proper	time:	1)	the	interval	of	proper	time	measured	by	the	clock	of	the	first	(reference)	station	between	event	of	coming	the	wavefront	to	the	reference	point	of	the	first	antenna	and	clock
synchronization	and	2)	the	interval	of	proper	time	measured	by	the	clock	of	the	second	(remote)	station	between	event	of	coming	the	wavefront	to	the	reference	point	of	the	second	antenna	and	clock
synchronization.	The	antenna	reference	point	is	the	point	of	injection	of	phase	calibration	tone	if	the	phase	calibration	was	used	in	data	analysis	or	the	phase	center	of	the	antenna.	The	following
parameters	are	written	to	the	output	ascii	database:

Observation	index	in	the	database.	Starts	from	1.
Observation	index	in	PIMA.	This	index	does	not	necessarily	equal	to	the	observation	index	in	the	database.	This	index	is	used	to	associate	a	given	observation	in	the	database	with	an	observation
index	in	PIMA	internal	data	structures.

Long	scan	name	generated	by	PIMA	in	the	form	doy_HHMMSS_iiii,	where	doy	is	the	day	of	the	year,	HHMMSS	is	the	scan	reference	time	and	iiii	is	the	scan	index	assigned	by	PIMA.

Short	scan	name	embedded	in	the	FITS-IDI	file.

Source	name,	B1950	notation.	A	non-standard	name	is	allowed.

8-character	long	name	of	the	reference	(first)	station.

8-character	long	name	of	the	remote	(second)	station.

SNR	at	the	higher	band

SNR	at	the	lower	band

Scan	reference	time	in	format	YYYY.MM.DD-hh:mm:ss.ffff	in	TAI.	This	time	is	computed	by	mkdb	and	is	rounded	to	an	integer	second.

Scan	reference	time	in	TAI	with	respect	to	the	nominal	start	of	the	first	observation	of	the	experiment	in	seconds.	NB:	The	first	observation	of	the	experiment	is	not	necessarily	the	first	experiment	in
the	database.

Offset	of	the	scan	reference	time	with	respect	to	the	nominal	observation	start	time	(sec)

Offset	of	the	fringe	reference	time	with	respect	to	the	nominal	observation	start	time	at	the	higher	band	(sec)

Offset	of	the	fringe	reference	time	with	respect	to	the	nominal	observation	start	time	at	the	lower	band	(sec)

Theoretical	group	delay	on	scan	reference	time	computed	by	VTD	during	fringe	fitting	analysis	(sec)

Theoretical	phase	delay	rate	on	scan	reference	time	computed	by	VTD	during	fringe	fitting	analysis	(dimensionless)

A	priori	geocentric	group	delay	on	scan	reference	time	for	the	higher	band	computed	for	the	correlator	(sec)

A	priori	geocentric	group	delay	on	scan	reference	time	for	the	lower	band	computed	for	the	correlator	(sec)

A	priori	geocentric	phase	delay	on	scan	reference	time	rate	for	the	higher	band	computed	for	the	correlator	(dimensionless)

A	priori	geocentric	phase	delay	on	scan	reference	time	rate	for	the	lower	band	computed	for	the	correlator	(dimensionless)

Total	group	delay	on	scan	reference	time	at	the	higher	band	(sec)

Total	group	delay	on	scan	reference	time	at	the	lower	band	(sec)

Total	single-band	delay	on	scan	reference	time	at	the	higher	band	(sec)

Total	single-band	delay	on	scan	reference	time	at	the	lower	band	(sec)

Total	phase	delay	rate	on	scan	reference	time	at	the	higher	band	(sec)

Total	phase	delay	rate	on	scan	reference	time	at	the	lower	band	(sec)

Reference	frequency	of	the	higher	band.	Usually	this	is	the	lowest	frequency	of	the	band.	(Hz)

Reference	frequency	of	the	lower	band.	Usually	this	is	the	lowest	frequency	of	the	band.	(Hz)

Total	fringe	phase	at	the	higher	band	(rad)

Total	fringe	phase	at	the	lower	band	(rad)

Total	geocentric	phase	on	scan	reference	time	at	the	higher	band	(rad)

Total	geocentric	phase	on	scan	reference	time	at	the	lower	band	(rad)

Residual	geocentric	phase	at	the	higher	band	on	fringe	reference	time.	(rad)

Residual	geocentric	phase	at	the	lower	band	on	fringe	reference	time.	(rad)

Residual	geocentric	group	delay	at	the	higher	band	(sec)

Residual	geocentric	group	delay	at	the	lower	band	(sec)

Residual	geocentric	phase	delay	rate	at	the	higher	band	(dimensionless)

Residual	geocentric	phase	delay	rate	at	the	lower	band	(dimensionless)

Residual	geocentric	group	delay	rate	on	fringe	reference	time	at	the	higher	band	(sec)

Residual	geocentric	group	delay	rate	on	fringe	reference	time	at	the	lower	band	(sec)

Ratio	of	the	offset	of	the	scan	reference	time	with	respect	to	nominal	observation	start	to	the	nominal	observation	duration

Station	order	in	the	baseline:	1	--	direct	order;	-1	reversed	order

Effective	scan	duration	at	the	higher	band	in	sec

Effective	scan	duration	at	the	lower	band	in	sec

Elevation	angle	at	the	first	station	at	the	scan	reference	time	(degrees)

Elevation	angle	at	the	second	station	at	the	scan	reference	time	(degrees)

Azimuth	angle	at	the	first	station	at	the	scan	reference	time	(degrees)

Azimuth	angle	at	the	second	station	at	the	scan	reference	time	(degrees)

Uncertainty	of	the	group	delay	estimate	on	scan	reference	time	at	the	higher	band	(sec)

Uncertainty	of	the	group	delay	estimate	on	scan	reference	time	at	the	lower	band	(sec)

Uncertainty	of	the	phase	delay	rate	estimate	on	scan	reference	time	at	the	higher	band	(dimensionless)

Uncertainty	of	the	phase	delay	rate	estimate	on	scan	reference	time	at	the	lower	band	(dimensionless)

Effective	ionosphere	frequency	for	group	delay	for	the	higher	band	(Hz)

Effective	ionosphere	frequency	for	group	delay	for	the	lower	band	(Hz)

Effective	ionosphere	frequency	for	phase	delay	for	the	higher	band	(Hz)

Effective	ionosphere	frequency	for	phase	delay	for	the	lower	band	(Hz)

The	offset	and	format	of	each	parameter	is	specified	in	the	header	of	the	ascii	database.

Keyword	MKDB.OUTPUT_NAME	controls	the	name	of	the	output	file.	Its	meaning	depends	on	MKDB.OUTPUT_TYPE.	If	the	output	type	is	TEXT	or	AMPL,	then	the	value	of	MKDB.OUTPUT_NAME	is	the
file	name.	If	the	output	type	is	GVF,	then	the	value	of	MKDB.OUTPUT_NAME	is	the	database	suffix	—	a	character	in	lower	case.	The	database	name	is	yyyymmdd_s	where	yyyy	is	the	year,	mm	is	the
month	number	with	heading	zero,	dd	is	the	day	of	the	month	with	heading	zero	and	is	the	suffix	specified	by	MKDB.OUTPUT_NAME.	Suffixes	a-e	are	reserved	to	imported	databases	converted	from
MARK3-DBH	or	vgosdb	formats	to	gvf.	Suffixes	x-z	are	resolved	for	tests.

In	order	to	generate	the	output	in	GVF	format,	PIMA	requires	some	additional	information	that	it	cannot	find	in	FITS-IDI	files	with	visibilities.	This	information	is	supplied	in	an	the	experiment
description	file.	The	name	of	that	file	is	the	value	of	keyword	MKDB.DESC_FILE.	If	the	value	of	MKDB.DESC_FILE	is	NO,	then	no	information	that	is	supposed	to	be	defined	in	the	experiment	description
is	exported	to	the	output	database.

PIMA	can	put	in	the	output	database	two	frequency	bands	in	the	dual-band	experiment.	The	fringe	fitting	procedure	runs	twice	for	a	dual-band	experiment.	The	second	band	can	either	occupy	a	range	of
IFs	or	a	frequency	group.	PIMA	requires	to	have	two	control	files	for	the	lower	and	upper	bands.	Task	mkdb	should	use	the	control	file	with	the	upper	band.	The	file	for	the	upper	band	of	dual-band	data
should	have	a	reference	to	the	control	file	file	for	the	lower	band.	The	name	of	the	control	file	for	the	lower	band	is	specified	in	the	keyword	MKDB.2ND_BAND.

Post-Solve	has	two	slots	for	group	delays,	phase	delay	rates	and	other	quantities:	the	1st	and	the	2nd.	Post-Solve	assumes	the	first	slot	is	the	the	upper	frequency	and	the	second	one	is	for	the	lower
frequency	but	it	does	not	check.

Keyword	MKDB.2ND_BAND	should	have	value	NO	for	single	band	experiment	and	for	the	control	file	for	fringe	fitting	the	lower	band.	It	should	have	the	name	of	the	control	file	for	the	lower	band	inside
the	control	file	for	the	upper	band	of	a	dual-band	experiment.

PIMA	needs	to	know	where	to	write	the	output	database	in	GVF	format.	Keyword	MKDB.VCAT_CONFIG	specifies	the	configuration	file	for	VLBI	database	catalogue.	That	configuration	file	defines	two
directories:	directory	for	ascii	envelope	wrappers	(keyword	GVF_ENV_DIR)	and	directory	for	binary	files	(keyword	GVF_DB_DIR).	The	same	configuration	files	is	supposed	to	be	used	by	Post-Solve.	Post-
Solve	assumes	that	configuration	file	has	name	$SAVE_DIR/vcat.conf	.	Therefore,	in	order	Post-Solve	to	find	the	database	crested	by	PIMA,	the	control	file	should	specify	$SAVE_DIR/vcat.conf	with
environment	variable	SAVE_DIR	expanded.

Database	file	in	GVF	format	can	be	read	with	GVH	library.	The	GVH	package	has	routine	gvf_transform	that	can	transform	from	binary	representation	of	the	database	to	the	ascii	and	back	to	binary	form.
The	ascii	representation	of	a	database	is	human	readable.	Moreover,	Post-Solve	can	work	with	both	ascii	and	binary	representation,	binary	representation	being	more	than	one	order	of	magnitude	faster.
Transformation	to	an	ascii	representation	can	be	useful	for	simple	editing	such	as	replacement	of	source	name	or	station	name.

Post-Solve	classifies	observations	as	good,	bad,	but	recoverable,	and	bad	unrecoverable.	The	latter	category	is	not	visible	and	Post-Solve	does	not	allow	to	recover	them.	The	common	reasons	for	that:	1)
SNR	less	than	the	limit	specified	in	the	keyword	FRIB.SNR_DETECTION	of	the	PIMA	control	file;	2)	lack	of	phase	calibration	for	a	given	observation	when	pcal	is	anything	else	than	NO;	failure	in	fringe
fitting,	f.e.	because	there	are	less	than	3	valid	accumulation	periods.	Since	PIMA	does	not	determine	whether	an	observation	is	really	detected	or	not,	if	FRIB.SNR_DETECTION	is	too	high,	there	is	a
chance	that	Post-Solve	will	miss	good	observations.	For	this	reason,	it	is	recommended	to	set	a	rather	low	FRIB.SNR_DETECTION	parameters,	f.e.	5.0,	and	then	set	the	SNR	limit	in	Post-Solve	but	hitting	J.
Post-Solve	sets	the	SNR	limit	temporarily.	The	observations	below	the	limit	are	considered	unrecoverable	until	the	limit	is	changed.	If	the	SNR	limit	is	lowered,	but	not	below	the	limit	used	by	PIMA,	the
observation	from	bad	and	unrecoverable	becomes	bad	and	recoverable.	Reducing	the	SNR	limit	in	Post-Solve	below	the	limit	used	by	PIMA	does	not	have	effect.

A	suggested	strategy	is	to	set	a	low	FRIB.SNR_DETECTION,	5.0,	and	after	loading	the	database	into	Post-Solve	set	higher	SNR	limit	in	Post-Solve,	5.8–6.0.	After	cleaning	the	database	for	outliers	with	SNR
limit	5.8–6.0	the	limit	is	lowered	to	the	value	used	by	PIMA.	Such	a	strategy	avoids	the	problem	of	contamination	the	dataset	with	too	many	outliers	which	may	cause	difficulties	in	initial	analysis,	since
too	many	outliers,	say	more	than	10%	may	significantly	skew	residuals.

Split	and	export	data	for	imaging

PIMA	has	a	capability	to	format	its	results	in	the	form	that	is	suitable	for	both	absolute	astrometry/geodesy	or	imaging.	In	the	latter	case	PIMA	coherently	averages	the	visibilities	over	time	and
frequency	and	applies	all	necessary	calibrations	and	re-normalizations.

If	a	given	observation,	given	IF	does	not	system	temperature	or	antenna	gain,	or	have	Tsys	out	of	range	[10,	10000]K	or	have	zero	gain,	the	visibility	for	such	an	observations,	such	an	IF	is	discarded.
Therefore,	calibration	for	system	temperature	and	antenna	gain	must	be	performed	before	running	task	splt.	In	contrast,	the	data	without	amplitude	calibration	are	still	usable	for	absolute
astrometry/geodesy.	Flagging	data	for	the	time	intervals	when	the	antennas	were	off-sources	is	essential	for	deriving	a	good-quality	image.	Flagging	can	also	be	performed	before	mkdb,	although	usually
it	has	only	a	marginal	effect.

Import	gain	curves

As	of	2016,	only	the	NRAO	generates	visibility	data	that	are	fully	compliant	with	FITS-IDI	specifications	and	contain	gain	curves.	Data	generated	by	other	correlators	do	not	have	this	information,	and
therefore,	the	gain	curves	should	be	imported.	Import	gain	curves	is	beneficial	for	processing	VLBA	data,	since	the	gain	curves	embedded	in	the	database	may	not	be	the	best	one.

PIMA	task	prga	(PRint	GAin)	prints	gain	for	each	station,	each	IF.	It	is	recommended	to	inspect	these	values.

PIMA	supports	two	formats	of	gain	information:	VLBA	gain	and	EVN	gain	files.	The	VLBA	gain	format	allows	to	specify	different	gain	for	time	ranges,	and	therefore,	this	format	is	preferable.

Gain	file	specifies	gain	at	the	reference	elevation,	the	so-called	Degrees	Per	Flux	Unit	(DPFU)	factor	in	Jy/K	for	R	and	L	polarizations	for	a	certain	frequency	range	and	a	set	of	coefficients	that	specify	the
polynomial	that	describes	the	dependence	of	gain	with	elevation	—	that	is	why	it	is	called	"gain	curve".	If	the	elevation	dependence	is	not	known,	than	the	polynomial	has	only	one	coefficient	for	degree	0:
1.0

PIMA	task	gean	allows	to	import	gain	curves.	It	requires	either	qualifier	vlba_gain	or	evn_gain.	The	value	of	the	qualifier	is	the	file	name	with	gains.	When	the	firsts	qualifier	is	vlba_gain	PIMA	requires
the	second	qualifier	gain_band	that	specifies	the	band.	Supported	bands	are	class="val">90cm,	class="val">50cm,	class="val">21cm,	class="val">18cm,	class="val">13cm,	class="val">13cmsx,
class="val">6cm,	class="val">7ghz,	class="val">4cm,	class="val">4cmsx,	class="val">2cm,	class="val">1cm,	class="val">24ghz,	class="val">7mm,	class="val">3mm.	NB:	PIMA	does	not	check	whether	the
band	is	supported.

PIMA	wrapper	pf.py	does	this	task	as	well.	It	assumes	to	find	files	vlba.gains	and	ivs.gains	in	directory	specified	by	configuration	parameter	--stable-share.	pf.py	wrapper	tries	both	gain	files.

Task	gean	does	not	report	an	error,	if	it	does	not	find	a	gain	for	the	specific	station,	specific	frequency	range,	specific	time	interval.	If	it	does	not	find	gain,	the	gain	is	set	to	zero.	If	the	gain	is	zero	for	a
given	station,	given	IF,	PIMA	task	splt	will	not	export	visibilities	for	a	given	station.	It	is	recommended	to	inspect	gain	values	by	running	PIMA	task	prga	after	importing	gains	in	order	to	be	sure	the	are
correct.	Wrapper	pf.py	runs	prga	automatically	at	the	end.	The	results	an	be	found	in	the	log	file	of	task	gain.

Flagging	visibilities	with	low	amplitude	at	the	beginning	or	end	of	a	scan.

Data	acquisition	system	often	record	before	and/or	after	the	actual	scan	time.	The	field	system	is	supposed	to	record	time	stamp	of	nominal	start	and	nominal	stop	time	and	the	correlator	is	supposed	to
flag	accumulation	periods	that	were	recorded	when	the	antennas	were	off-source.	However,	it	may	happen	that	visibility	data	for	a	given	time	have	intervals	when	the	antenna	were	off-source.	Usually,
this	happens	at	the	beginning	of	the	scan.	This	may	happen	because	the	fields	system	software	incorrectly	determine	on/off	time,	or	did	not	propagate	it	to	the	correlator,	or	the	antenna	was	off	while	the
fields	system	software	reported	the	antenna	was	on.	Propagation	such	"data"	poses	a	serious	problem	for	imaging.	Such	visibilities	should	be	flagged	during	imaging	stage.	If	left	unflagged	they	distort	an
image.	PIMA	has	task	onof	that	analyzes	the	data,	determines	accumulation	periods	with	the	fringe	amplitude	at	the	beginning	and/or	the	end	of	a	scan	with	fringe	amplitude	below	the	threshold	and
flag	them	out.	This	task	should	run	before	splt.

PIMA	supports	two	mechanisms	for	flagging	visibility.	When	PIMA	loads	the	data,	it	checks	all	visibilities	for	inconsistencies,	such	as	lack	of	autocorrelation,	wrong	source	indices,	duplicates,	etc.	It	puts
indices	of	damaged	visibilities	in	a	separate	file	and	bars	them	from	loading.	These	visibilities	are	considered	unrecoverable.	PIMA	supports	keyword	TIME_FLAG_FILE	that	defines	a	so-called	time
epoch	flag	file.	The	file	flag	file	consists	of	records	in	plain	ascii	that	defines	the	visibility	to	be	flagged.	A	record	consists	of	four	words	separated	by	one	or	more	blanks.	The	first	word	is	the	observation
index,	the	second	word	is	the	index	of	the	accumulation	period	within	that	observation,	and	the	third	word	is	a	flag.	The	flag	is	multiplied	by	the	visibility.	Flag	0	means	the	visibility	will	not	be	used	for
further	processing.	Lines	that	start	with	#	are	considered	as	comments	and	discarded	by	PIMA.

Task	onof	uses	this	mechanism	to	flag	out	bad	accumulation	periods.	It	determines	accumulation	periods	with	low	amplitude	and	write	their	indices	and	observation	indices	into	the	time	epoch	file.
Other	tasks,	such	as	frib,	splt	read	this	file	and	flag	out	visibilities	that	have	corresponding	indices.

Task	onof	does	not	require	qualifiers.	Its	behavior	is	determined	by	a	number	of	keywords	of	the	control	file.	If	Keyword	ONOF.GEN_FLAGS_MODE	is	CREATE,	PIMA	will	ignore	the	previous	contents	of
the	flag	file	and	overwrite	it.	If	ONOF.GEN_FLAGS_MODE	is	UPDATE,	then	PIMA	will	honor	input	of	the	flag	file	specified	by	the	keyword	TIME_FLAG_FILE	and	update	it.	In	this	mode	PIMA	will	never
reduce	the	number	of	flagged	visibilities,	but	it	can	only	increase	them.

In	order	to	determine	accumulation	periods	at	the	beginning	or	the	end	of	the	scan	that	have	to	flags,	PIMA	needs	to	get	a	hint	which	interval	to	consider	as	"good".	Two	keywords,
ONOF.KERNEL_START_SHARE	and	ONOF.KERNEL_END_SHARE	determine	the	so-called	kernel	interval.	The	value	of	these	keywords	are	the	offsets	or	the	kernel	start	and	stop	time	as	a	share	of	the
total	nominal	scan	length.	The	share	runs	from	0	to	1.	instance,	ONOF.KERNEL_START_SHARE:	0.25,	ONOF.KERNEL_END_SHARE:	0.80	specifies	the	kernel	interval	that	starts	at	0.25*scan_length	and
ends	at	0.80*scan_length.	However,	the	length	of	the	kernel	interval	is	limited	by	the	value	of	ONOF.COHERENT_INTERVAL	(in	seconds).	If	parameters	ONOF.KERNEL_START_SHARE	and
ONOF.KERNEL_END_SHARE	specify	the	interval	longer	than	ONOF.COHERENT_INTERVAL,	then	ONOF.KERNEL_END_SHARE	is	reduced	in	such	a	way	that	the	kernel	interval	will	be	close,	but	not
exceeding	ONOF.COHERENT_INTERVAL.

PIMA	first	computes	coherently	averaged	complex	visibilities	over	the	kernel	interval	and	then	tries	visibilities	coherently	averaged	over	frequency	over	and	accumulation	periods	backwards	from	the
start	of	the	kernel	interval	and	forward	from	the	end	of	the	kernel	interval.	PIMA	computes	the	frequency	averaged	visibility	amplitudes,	computes	the	ratio	of	the	visibility	amplitude	over	the	trial
accumulation	to	the	amplitude	over	the	kernel	interval	and	tries	two	criteria:	a)	if	the	ratio	is	less	than	(1-k*σa),	where	k	is	the	value	of	the	keyword	ONOF.NSIG_THRESHOLD	and	σa,	then	the
accumulation	periods	is	marked	as	a	candidate	for	exclusion;	b)	if	the	ratio	is	less	than	ONOF.AMPL_THRESHOLD,	then	the	accumulation	periods	is	marked	as	a	candidate	for	exclusion.	If
ONOF.AMPL_THRESHOLD	is	zero	then	the	first	criterion	is	disabled.	If	ONOF.AMPL_THRESHOLD	is	zero,	then	the	second	criterion	is	disabled.	If	ONOF.NSIG_THRESHOLD	>	0.0,	the	second	criteria	is
used	only	if	the	ratio	of	the	amplitude	in	the	kernel	interval	to	the	uncertainty	amplitude	at	a	given	accumulation	period	is	less	than	ONOF.NSIG_THRESHOLD.

If	PIMA	finds	k	consecutive	candidates,	where	k	is	the	value	of	keyword	ONOF.MIN_LOW_AP,	then	it	flags	them	and	all	consecutive	visibilities	at	the	beginning	or	the	end	of	the	scan.

Criterion	ONOF.AMPL_THRESHOLD	is	suitable	for	observations	with	high	SNR	and	long	accumulation	periods.	Visibility	amplitude	computed	over	one	accumulation	period	has	a	large	scatter	and	the
fluctuations	caused	by	noise	may	be	mistakenly	considered	as	the	source	being	off	source.

Criterion	ONOF.NSIG_THRESHOLD	is	suitable	for	both	low	SNR	and	high	SNR	observations.	Value	3	was	found	satisfactory	for	most	of	cases.	Task	onof	is	not	able	to	find	time	interval	when	antennas
were	off-source	for	observations	with	low	SNR,	say	less	than	10,	because	amplitude	fluctuations	due	to	random	noise	become	too	large	to	be	distinguished	from	antennas	being	off-source.

Running	task	splt	for	splitting	and	exporting	data	for	imaging

Using	results	of	fringe	fitting,	PIMA	performs	coherent	averaging	over	time	and	frequency	after	rotation	phases	according	to	group	delays	and	phase	delay	rates,	applies	calibration	for	system
temperature,	gain	curves,	bandpass	re-normalization,	combines	all	visibilities	of	a	given	source	and	writes	averaged	visibilities	and	their	weights	into	output	binary	files	in	FITS	format	that	are	suitable
for	imaging	with	AIPS	or	DIFMAP.

Task	splt	processes	the	data	on	source	basis.	A	user	can	specify	the	source	name	that	will	be	processed	or	to	request	to	process	all	the	sources	in	a	cycle.	Keyword	SPLT.SOU_NAME	controls	this	behavior.
Its	value	can	be	either	B-name,	or	J-name	or	ALL,	which	means	to	process	all	the	sources.

Keyword	SPLT.FRQ_MSEG	specifies	the	number	of	spectral	channels	to	be	coherently	averaged	out.	A	usual	choice	for	processing	legacy	data	is	to	specify	the	number	of	spectral	channels	in	an	individual
IF.	In	that	cases	all	spectral	channels	will	be	averaged	out.	PIMA	does	not	average	spectral	channels	across	IF	boundaries.	That	means	that	the	maximum	value	of	SPLT.FRQ_MSEG	is	limited	to	the
number	of	channels	in	an	IF.	Starting	from	2014,	observations	at	512	MHz	band	became	more	and	more	common.	Averaging	across	512	MHz	band	may	result	to	image	smearing.	Therefore,	it	may	appear
beneficial	to	decrease	the	number	of	spectral	channels	that	will	be	averaged.	Task	splt	averages	SPLT.FRQ_MSEG	spectral	channels	in	one	output	IF.	If	SPLT.FRQ_MSEG	is	less	than	the	number	spectral
channels	in	one	IF,	then	the	output	dataset	will	have	more	output	IFs	than	the	input	dataset.

Keyword	SPLT.TIM_MSEG	specifies	the	number	of	accumulation	periods	to	be	coherently	averaged	out.	The	interval	of	time	that	with	SPLT.TIM_MSEG	accumulation	periods	is	called	segment.	A	usual
choice	is	to	select	segment	duration	10–20	seconds.	DIFMAP	allows	to	averaged	data	further	increasing	segment	length	(DIFMAP	task	uvaver),	but	after	the	data	have	been	averaged,	there	is	no	way	to
undo	averaging.	In	a	case	when	a	very	large	map	will	be	made,	SPLT.TIM_MSEG	may	be	reduced	in	order	to	avoid	image	smearing.

Keyword	SPLT.SNR_MIN	specifies	the	SNR	threshold.	Observations	with	the	SNR	over	all	frerquencies	and	over	total	scan	duration	less	than	that	threshold	are	excluded	for	processing	and	are	not
writtebn	in	the	output	file.

One	output	visibility	is	a	result	of	coherent	averaging	over	SPLT.FRQ_MSEG*SPLT.TIM_MSEG	input	visibilities.	It	should	be	noted	that	if	SPLT.FRQ_MSEG	is	not	an	integer	divisor	of	the	number	of
spectral	channels	and	SPLT.TIM_MSEG	is	not	an	integer	divisor	of	the	total	number	of	accumulation	periods	of	an	observation,	the	number	of	used	input	visibilities	can	be	less	at	the	end	of	the
observation	or	at	the	upper	part	of	the	spectrum	can	be	less.

Phases	of	input	visibilities	are	rotated	before	averaging	according	to	phase	delay	rate	and	group	delays	that	are	found	during	fringe	fitting.	PIMA	reads	results	of	fringe	fitting	from	the	file	specified	by
the	keyword	FRINGE_FILE.

Since	PIMA	performs	fringe	fitting	for	each	observation	independently,	in	general,	fringe	reference	time	is	different.	As	a	result,	the	misclosure	of	the	raw	phases	from	the	contribution	of	group	delay
and	phase	delay	rates	is	not	zero.	If	SPLT.STA_BASED:	YES	or	ALL,	then	PIMA	performs	a	procedure	that	converts	baseline-dependent	group	delays	and	phase	delay	rates	to	station-based	that
automatically	have	zero	misclosure	and	therefore,	applying	phase	rotation	from	the	results	of	fringe	fitting	does	not	change	misclosure	in	original	visibilities.	PIMA	performs	this	conversion	at	each	scan.
It	may	happen	that	observations	of	a	given	scan	have	to	be	split	into	several	subarrays.	A	subarray	is	a	set	of	observations	that	has	common	baselines	with	every	station	within	a	subarray.	For	example	a
station	array	ABCDRFG	may	have	to	be	split	into	two	subarrays	ABCD	and	EFG	if	there	are	no	usable	observations	at	baselines	AE,AF,AG,	BE,BF,BG,CE,CF,CG,DE,DF,DG	.	If	in	this	example,	there	are	no
usable	data	at	baseline	FG,	there	will	be	three	subarrays:	ABCF,	EF,	EG.	PIMA	splits	the	data	into	subarrays	for	processing	each	scan.	If	a	subarray	for	a	given	station	was	already	used	in	the	previous
scans,	PIMA	assigns	the	observations	to	that	subarray.	In	a	case	if	a	new	subarray	has	all	the	stations	that	were	in	one	of	the	previous	subarrays,	PIMA	assigns	observations	to	that	subarray.	In	a	case	is	a
new	subarray	has	all	the	stations	that	were	in	one	of	the	previous	arrays,	plus	one	or	more	new	station,	PIMA	extends	that	subarray,	and	assigns	the	observations	to	that	subarray.

In	a	case	if	all	scans	were	scheduled	at	all	antennas	and	fringes	were	detected	at	all	observations	and	no	observations	were	excluded,	there	will	be	only	one	subarray.	If	one	of	these	conditions	is	violated,
PIMA	may	end	up	with	many	subarrays.	Since	splitting	data	in	many	subarrays	reduces	the	number	of	phase	and	amplitude	misclosures,	in	general	it	is	undesirable	to	have	many	subarrays.	PIMA

supports	a	procedure	subarray	consolidation	controlled	by	the	keyword	SPLT.SUBARRY_CONSOLIDATION.	Value	NO	means	to	disable	subarray	consolidation.	Value	MIN	instructs	PIMA	to	preform
minimal	subarray	consolidation:	if	all	stations	of	subarray	A	are	present	in	the	subarray	B,	then	the	subarray	B	is	consolidated	with	subarray	A.	Value	MAX	instructs	to	preform	maximum	subarray
consolidation:	if	a	subarray	has	at	least	one	common	station	with	subarray	B,	both	subarrays	are	consolidated.

In	order	to	compute	station-dependent	group	delay,	phase	delay,	and	group	delay	correctly,	baseline-dependent	group	delay,	phase	delay,	and	group	delay	should	be	correct.	Fringe	fitting	provides	a
wrong	result	for	a	non-detection,	or	an	observation	affected	by	RFI.	Group	delays	of	non-detections	have	a	uniform	distribution	over	the	fringe	search	window,	which	is	several	orders	of	magnitude
larger	than	the	scatter	of	group	delays	for	normal	observations.	Therefore,	a	care	should	taken	in	order	to	block	using	bad	group	delays	by	task	splt.	It	is	recommended	to	process	the	data	with	VTD/Post-
Solve	in	order	to	identify	outliers	and	exclude	them	as	input	to	the	procedure	for	computing	station-based	group	delay,	phase	delay	and	group	delay	rate	using	keyword	EXCLUDE_OBS_FILE.	If
SPLT.STA_BASED:	YES	is	used,	the	observations	excluded	for	computing	station-based	quantities	will	remain	excluded	from	being	further	processed	and	written	in	the	the	output	file.	However,	in
general,	this	approach	is	too	restrictive.	When	SPLT.STA_BASED:	ALL	is	specified,	the	filters	specified	by	kewords	FRIB.SNR_DETECTION,	EXCLUDE_OBS_FILE,	INCLUDE_OBS_FILE,	and	OBS	is	applied
only	to	the	input	data	of	the	procedure	for	computing	station-based	quantities.	All	observations	between	the	stations	for	which	station-dependent	group	delays,	phase	delay,	and	group	delays	are
computed	are	used	for	further	processing,	regardless	whether	they	passed	the	input	filter	or	not.	Though	if	there	were	no	observations	at	baselines	at	certain	stations,	there	will	be	no	station-based
quatnties	for	these	stations,	and	therfore,	no	for	the	observations	with	these	stations	will	be	used	for	generating	the	output.	Value	ALL	is	recommended.

Alternatively,	when	SPLT.STA_BASED:	NO,	PIMA	does	not	convert	baseline-dependent	quantities	to	station-based.	Important:	phase	misclosure	is	distorted	when	this	option	is	used.	This	option	is	useful
when	the	data	are	to	be	processed	on	a	baseline	basis.

Keyword	SPLT.SNR_MIN	specifies	the	SNR	threshold	for	the	output.	Observations	with	the	SNR	over	all	frequencies	and	over	total	scan	duration	less	than	that	threshold	are	excluded	for	processing	and
are	not	written	in	the	output	file.	This	criteria	is	used	after	the	averaged	visibilities	are	computed.	If	SPLT.STA_BASED:	YES	or	SPLT.STA_BASED:	NO	was	used,	observations	with	SNR	less	than
FRIB.SNR_DETECTION	will	remained	excluded	even	if	their	SNR	is	equal	or	greater	than	SPLT.SNR_MIN.	However,	when	SPLT.STA_BASED:	ALL	is	specified,	observations	with	SNR	less	than
FRIB.SNR_DETECTION	may	become	valid.	For	instance,	if	stations	B	and	C	have	low	sensitivity,	but	station	A	has	high	sensitivity,	visibilities	at	baseline	BC	can	be	determined	using	phase	delay	rate	and
group	delay	at	baselines	AB	and	AC.	The	SNR	of	visibilities	at	baseline	BC	may	be	very	low.	Keyword	SPLT.SNR_MIN	allows	to	filter	out	such	visibilities	with	low	SNR	computed	on	the	basis	fringe	fitting
results	from	visibility	analysis	at	other	baselines.

There	are	several	options	to	generate	the	output	in	a	case	of	dual-polarization	data.	Keyword	SPLT.POLAR	specifies	which	polarizations	to	put	in	the	output:	ALL	for	all	polarizations	that	present	in	the
data,	PAR	only	for	RR	or	LL	polarizations.	Other	supported	values:	I,	RR,	RL,	LR,	and	LL.

PIMA	computes	averaged	visibilities	and	their	weights.	The	algorithm	for	weights	computation	is	controlled	by	keyword	SPLT.WEIGHT_TYPE.	According	to	FITS	specifications,	weight	is	defined	as
reciprocal	to	the	fringe	amplitude	variance.	Value	ONE	forces	PIMA	to	set	all	weights	to	1.	Value	OBS_SNR	instructs	PIMA	to	compute	weights	on	the	basis	of	signal	to	noise	ratio	SNR.	The	segment
weight	is	Ampl/SNR**2,	where	SNR	is	the	signal	to	noise	ratio	over	visibilities	of	a	given	segment.	The	segment	SNR	computed	from	the	SNR	over	all	visibilities	used	in	fringe	fitting	and	scaled	by	square
root	of	the	the	ratio	of	visibilities	in	the	segment	to	the	total	number	is	used	visibilities	in	the	observation.	When	SPLT.WEIGHT_TYPE	is	OBS_RMS,	PIMA	computes	variance	of	the	fringe	amplitude	over
the	observation	and	assigns	weights	for	all	segments	reciprocal	to	this	estimate	of	variance.	When	SPLT.WEIGHT_TYPE	is	SEG_RMS,	PIMA	computes	variance	of	fringe	amplitude	over	visibilities	of	a
given	segment	and	assigns	weights	reciprocal	to	this	variance.

Method	SEG_RMS	is	the	preferable,	since	it	accounts	for	temporal	variation	of	the	variance.	However,	it	requires	a	sufficient	number	of	segments	for	computing	meaningful	variance.	When
SPLT.WEIGHT_TYPE	is	AUTO,	PIMA	uses	different	ways	to	use	the	weight	depending	on	the	number	of	accumulation	periods	in	a	given	segments.	If	the	number	of	accumulation	periods	per	segment
specified	in	the	keyword	SPLT.TIM_MSEG	is	equal	or	greater	than	the	threshold	(currently	8),	the	variance	is	computed	over	visibilities	of	a	given	segment.	Otherwise,	the	variance	will	be	computed	over
all	visibilities	of	the	observation	(equivalent	to	OBS_RMS).	SPLT.WEIGHT_TYPE:	AUTO	is	recommended	for	a	general	case.

When	computing	calibrated	amplitude	PIMA	applies	two	renormalizations	unless	a	user	disables	it.	When	SPLT.AUTOCORR_NRML_METHOD:	AVERAGED,	PIMA	normalizes	system	temperature	for
masking	autocorrelation.	The	system	temperature	is	measured	by	integrating	the	total	power	over	entire	IF.	When	a	portion	of	the	bandwidth	where	Tsys	was	computed	is	masked	out,	the	total	power	is
changed.	In	general,	the	spectrum	of	noise	is	not	constant	over	the	band,	it	is	proportional	to	the	autocorrelation.	PIMA	normalizes	autocorrelation	to	have	the	average	equal	to	1	over	the	nominal	IF
width.	When	SPLT.AUTOCORR_NRML_METHOD:	AVERAGED,	PIMA	computes	the	mean	autocorrelation	over	the	used	portion	of	the	bandwidth	within	each	IF,	which	in	general	is	not	1.	Then	fringe
amplitude	is	divided	by	the	mean	autocorrelation.	SPLT.AUTOCORR_NRML_METHOD:	NO	disables	applying	this	renormalization.	It	is	recommended	to	use	SPLT.AUTOCORR_NRML_METHOD:
AVERAGED.

When	SPLT.BPASS_NRML_METHOD:	WEIGHTED,	PIMA	divides	the	fringe	amplitude	by	the	square	root	of	the	product	of	the	square	root	of	bandpass	renormalization	factor.	The	representative
bandwidth	of	the	intermediate	frequency	used	for	re-normalization	is	specified	by	the	keyword	SPLT.BPASS_NRML_RANGE.	The	value	of	this	keyword	is	two	numbers	from	0	to	1	separated	by	the	colon.
These	number	specify	the	lower	and	the	high	part	of	the	representative	bandwidth	as	a	share	of	the	total	bandwidth.	Example:	SPLT.BPASS_NRML_RANGE:	0.25:0.80.	They	define	the	representative
bandwidth	as	[F_low	+	Bl*Fw,	F_low*Bh*fw].	PIMA	computes	renormalization	factor	R	=	(sum	Br/Nr)	/	Sum	Bt/Nt,	where	Br	—	bandpass	in	the	bandwidth	is	[F_low	+	Bl*Fw,
F_low*Bh*fw],	Nr	—	the	number	of	points	in	that	bandwidth;	Bt	bandpass	in	the	total	bandwidth,	Nt	the	total	number	of	points	in	the	entire	IF.	Factor	R	is	multiplied	by	every	point	of	the	bandpass	and
makes	its	normalized	over	the	representative	bandwidth	[F_low	+	Bl*Fw,	F_low*Bh*fw].	Usually	R	>	1.0	For	example,	if	the	IF	bandwidth	is	16	MHz	and	SPLT.BPASS_NRML_RANGE:	0.25:0.80,
then	the	representative	portion	of	the	bandwidth	used	for	renormalization	starts	at	0.25*16=4.0	MHz	and	ends	at	0.8p*16=12.8	MHz.	Thus,	the	portion	[4.0,	12.8]	MHz	of	the	total	bandwidth	[0,	16]
MHz	is	considered	representative	and	the	bandpass	is	normalized	to	be	1	over	the	representative	portion	of	the	bandwidth.	The	share	of	the	representative	bandwidth	depend	on	quality	of	hardware.
0.25:0.80	is	a	good	choice	for	most	of	the	cases.

In	addition	to	generating	the	output	averaged	visibilities	in	FITS-IDI	format,	PIMA	task	splt	will	generate	total	visibilities	averaged	over	entire	can	when	SPLT.TOTAL_UV:	YES	is	specified.	NB:	unlike	to
averaged	visibilities	written	in	the	FITS-IDI	format,	the	total	visibilities	are	refereed	to	the	band	reference	frequency.	Name	of	a	file	with	total	visibilities	obeys	the	following	convention:
JJJJJJJJJJ_B_uvt.txt,	where	JJJJJJJJJJ	is	the	10-character	long	J2000	source	name	and	B	is	the	band	defined	in	the	keyword	BAND.	Total	visibilities	are	written	in	the	plain	ascii	format.	See
document	Total_visibilities_format.txt	for	format	description.

Compute	gain	correction

It	is	rather	common	from	some	stations	to	have	some	IFs	with	gain	to	be	wrong	by	a	certain	factor.	This	may	be	due	to	unaccounted	change	in	gain	curve,	or	due	to	systematic	error	in	Tsys.	During
imaging	process	gain	can	be	adjusted	using	amplitude	closure.	This	procedure	is	called	amplitude	self-calibration.	However,	a	source	should	be	relatively	bright	and	UV	coverage	should	be	rather	dense
for	amplitude	self-calibration	to	produce	good	results.	If	the	gain	is	off	by	a	factor	that	is	constant	over	entire	experiment,	the	gain	correction	determined	from	imaging	one	source	can	be	used	as	a	priori
for	imaging	other	sources.	This	is	just	that	PIMA	task	gaco	(GAin	COrrection)	does.

PIMA	supports	keyword	SPLT.GAIN_CORR_FILE	that	specifies	so-called	gain	correction	file.	This	file	in	plain	ascii	format	defines	factors	for	each	station	and	each	IF	by	which	fringe	is	multiplied	when
task	splt	runs.

These	factors	can	be	assigned	manually	or	automatically.	Task	gaco	can	run	in	two	modes:	manual	and	automatic.	In	manual	mode	PIMA	expects	a	qualifier	init	with	the	value	of	the	a	priori	factor.
Value	1.0	or	0.0	are	usual	choices.	Task	gaco	with	qualifier	init	sets	all	gains	to	the	initial	value.	Gain	correction	1.0	means	no	correction.	Gain	correction	0.0	means	all	IFs	all	stations	should	be	deselected.

Task	gaco	writes	the	gain	correction	file.	If	task	gaco	was	invoked	in	init	mode,	the	gain	correction	should	be	edited	in	order	to	be	useful.	Example:	station	KP-VLBA	had	fringe	amplitude	a	factor	of	8–10
lower	in	IFs	3	and	4,	and	a	user	would	like	to	get	rid	of	them	for	imaging	purposes.	Than	PIMA	task	gaco	with	qualifier	init	and	value	1.0	is	called.	After	that	the	user	edits	the	gain	correction	file	that	the
task	created	ad	changes	gain	correction	for	KP-VLBA	IFs	3	and	4	from	1.0	to	0.0.

In	order	to	to	compute	gain	corrections	in	the	automatic	mode,	several	images	should	be	made	first	and	self-calibrated	visibilities	be	saved.	Then	PIMA	analyzes	the	ratio	of	original	amplitudes	before
amplitude	self-calibration	and	after	amplitude	self-calibration	and	determines	their	ratios	for	each	station	and	each	IF	using	least	squares.	These	gain	corrections	are	equivalent	to	the	factors	should	by
task	CORPLT	of	DIFMAP	package.	In	order	to	do	it,	PIMA	should	find	visibilities	before	and	after	imaging.	PIMA	supports	convention	that	a	file	with	visibilities	before	imaging	have	name
JJJJJJJJJJ_B_uva.fits,	where	JJJJJJJJJJ	is	the	10-character	long	J2000	source	name	and	B	is	the	band	defined	in	the	keyword	BAND.	PIMA	task	splt	created	files	with	averaged	visibilities	in	this
format.	PIMA	expects	files	with	self-calibrated	visibilities	after	imaging	to	have	names	in	the	form	of	JJJJJJJJJJ_B_uvs.fits.

When	used	in	the	automatic	mode,	PIMA	task	gaco	expects	two	qualifiers,	sou	and	dir,	the	first	is	mandatory	and	the	second	is	optional.	The	value	of	the	first	qualifier	is	a	comma-separated	source	list.
The	value	of	the	second	optional	qualifier	specifies	the	directory	where	files	with	original	and	self-calibrated	visibilities	can	be	found	(they	should	be	in	the	same	directory).	If	the	second	qualifier	is
omitted,	PIMA	will	search	for	visibilities	in	the	same	directory	where	task	splt	put	them:	SSSSS/EEE_uvs,	where	SSSSS	is	the	PIMA	scratch	directory	specified	by	the	keyword	EXPER_DIR	and	EEE	is	the
experiment	name	specified	by	the	keyword	SESS_CODE.

PIMA	task	gaco	used	in	the	automatic	mode	computes	the	gain	correction	file.	If	a	given	station	observed	no	sources	from	the	list,	the	gain	correction	for	that	station	is	set	to	1.0.	A	user	may	edit	the	gain
correction	file,	for	instance	setting	zeros	for	IFs	for	certain	station(s).	Setting	the	gain	correction	to	zero	will	effectively	flag	out	these	IFs	for	imaging	purposes,	while	these	IFs	are	still	available	for	other
tasks,	for	example,	fringe	fitting.

PIMA	task	splt	uses	gain	file,	unless	SPLT.GAIN_CORR_FILE:	NO.	It	multiplies	the	calibrated	visibility	by	the	product	of	gain	corrections	of	both	stations	of	a	baseline.	It	writes	the	used	gain	corrections
into	output	FITS	file	in	two	places:	1)	as	an	ascii	table	in	the	HISTORY	records	of	the	main	table,	2)	as	a	new	table	in	GACO.	It	is	possible	to	run	task	taco	the	second	time.	PIMA	searches	for	gain	correction
in	the	FITS	file	with	calibrated	visibilities,	applies	these	corrections	as	a	priori	and	writes	updated	total	gain	correction	with	respect	to	a	case	when	no	gain	correction	is	applied.	Thus,	if	to	run	gaco	task
more	than	once,	the	result	will	be	approximately	the	same.

Use	case	of	preparing	the	data	suitable	for	imaging

The	imaging	analysis	and	absolute	astrometry/geodesy	pipeline	has	a	common	beginning:	loading	the	data;	parsing	log	files,	checking	logs,	checking	phase	calibration,	cleaning	phase	calibration	for
spurious	tones,	checking	autocorrelation,	checking	Tsys;	running	coarse	fringe	fitting,	computation	of	the	bandpass,	running	fine	fringe	fitting.	After	that	point	the	pipelines	diverge.	Next	task	will	be
selecting	good	reference	sources	and	running	task	splt	for	them.	A	good	reference	source	is	strong,	observed	at	all	baselines	and	has	relatively	simple	structure.

It	is	first	recommended	to	run	splt	task	for	several	reference	sources	with	DEBUG_LEVEL:	2	or	3	and	with	FRIB.SNR_DETECTION:	6.0.	It	is	recommended	to	investigate	the	splt	log	file.	Search	there	for
lines	with	PIMA_SPLT_FITSTA	SOU:,	for	instance	with	using	grep.	This	line	provides	the	statistics	for	a	subarray.	(Remember:	a	scan	may	have	one	or	more	subarrays	that	can	be	later	consolidated	into
one	subarray).	An	analyst	should	examine	the	column	followed	by	MaxDev_Gr_Del.	This	column	provides	the	maximum	residual	of	transforming	baseline-dependent	group	delay	to	the	station-based.
Typical	value	of	this	residual	for	a	detected	source	is	50–300	ps.	A	source	with	complicated	structure	may	have	residual	1	–	2	ns.	But	a	residual,	say	1000	ns,	indicates	that	at	least	one	observation	in	the
subarray	was	a	non-detection.	Even	one	non-detection	can	spoil	entire	dataset	for	a	given	source	to	a	level	of	uselessness.	If	you	see	large	maximum	residual	in	the	subarray	statistics,	just	look	in	the
preceding	lines	that	start	with	PIMA_SPLT_FITSTA	Sou:.	Identify	sources	with	large	residuals	(say	more	than	12	&ndash	3	ns),	identify	their	observation	indices	that	can	be	found	in	the	column	followed
by	OBS:,	and	add	these	observation	indices	to	the	exclude	file.	Then	run	PIMA	task	splt	with	specifying	this	file	in	keyword	EXCLUDE_OBS_FILE	once	again.	Then	inspect	the	log	file	again.

After	inspection	shows	no	subarray	with	large	residuals,	the	selected	reference	sources	are	imaged	using	phase	and	amplitude	self-calibration.	If	for	some	reason	an	image	of	one	of	the	reference	sources
is	not	satisfactory,	another	that	bad	source	should	be	replaced	with	another	source.

When	good	images	were	produced	for	all	reference	sources,	PIMA	task	gaco	is	invoked	with	qualifier	sou	with	the	comma-separated	list	of	reference	sources.	After	that	the	gain	correction	file	is
inspected.	If	some	IFs	at	some	stations	are	to	be	masked	out,	corresponding	values	of	the	gain	correction	file	are	replaced	with	zeroes.

After	that	task	splt	runs	over	entire	dataset	by	specifying	SPLT.SOU_NAME:	ALL.	A	care	must	be	taken	to	use	only	detected	observations.	There	are	two	approaches	for	cleaning	the	dataset	for	non-
detections.	The	first	approach	is	to	raise	the	SNR	detection	limit	defined	by	keyword	FRIB.SNR_DETECTION.	Depending	on	the	search	window,	the	detection	limit	is	5.3–6.0,	the	wider	the	window	the
higher	the	limit.	Another	approach	is	to	run	full	absolute	astrometry/geodesy	pipeline	and	exclude	those	observations	that	are	flagged	out	by	Post-Solve.	Solve	will	flag	non-detections	and	other	"bad"
observations,	such	as	those	affected	by	RFI,	low	fringe	rate	problem,	etc.	Extraction	of	the	list	of	observations	that	is	performed	by	program	gvf_db	that	is	a	part	of	Solve	package.	Usage:

				gvh_db	database_name	mode

where	mode	is	either	10	for	a	processing	a	single-band	experiment	or	the	upper	band	of	a	dual-band	experiment	and	20	is	for	processing	lower	band	of	a	dual-band	experiment.	The	advantage	of	the
second	approach	is	that	detections	as	weak	as	4.8	can	be	used	since	Post-Solve	will	eliminated	non-detections	and	other	bad	detections.	Re-fringing	allows	to	recover	weak	detections.	The	disadvantage	is
that	Post-Solve	should	be	installed,	and	running	astrometry	analysis	requires	extra	efforts.

After	running	splt	over	the	entire	dataset,	the	splt	log	should	be	examined	the	same	way	as	we	did	when	we	processed	reference	sources.

Task	splt	creates	calibrated	visibilities	of	all	the	sources,	except	those	that	have	too	few	detections	and	put	then	in	directory	SSSSS/EEE_uvs.	Calibrated	visibilities	are	used	for	imaging	with	DIFMAP,
AIPS	or	another	software.	Result	of	imaging	are	two	files	per	source:	a	file	with	self-calibrated	visibilities	in	FITS	format	and	image	in	FITS	image	format.	The	image	contains	two	tables:	a	set	of	CLEAN
components	and	the	binary	image	that	was	generated	from	the	table	of	CLEAN	components.

OPAcity	Generation

Task	opag	downloads	data	files	with	results	of	computation	of	opacity,	atmosphere	brightness	temperature,	and	slant	path	delay	in	the	neutral	atmosphere	using	the	output	of	numerical	weather	models
generated	by	package	SPD	(Slant	Path	Delay)	package.	The	International	Path	Delay	Service	computes	these	qunaitites	using	program	SPD	for	all	known	and	planned	radiodelescopes	on	a	a	greid	over
frequency,	elevation,	and	azimuth	and	makes	them	public	available.

This	task	accesses	a	remote	Web	server,	downloads	relevant	data	files	with	slant	path	delays,	opacitites,	and	atmospheric	brightness	temperatures,	and	stores	then	in	directory	SSSSSS/EEE_sob.

Keyword	spd_url	is	required.	It	specifies	the	URL	where	the	datafiles	with	atmosperic	opacity	and	brightness	temperature	are	stored.	Recommended	web-site:	http://atmospheric-
propagation.smce.nasa.gov/spd/asc/geosit.

OPAcity	Loading

Task	opal	parses	the	files	with	opacity	and	brightness	temperature	on	the	3D	elevation-azimuth-time	grid	created	by	package	SPD	and	stored	at	SSSSSS/EEE_sob	by	invoking	task	opag,	interpolates	them
for	the	scan	start	and	scan	end	and	writes	down	into	PIMA	internal	data	structure.	It	also	computes	receiver	temperature	Trec	by	subtracting	atmosphere	temperature	from	measured	system
temperature.	Task	opal	also	initializes	arrays	with	so-called	modeled	and	cleaned	system	temperature,	i.e.	removes	if	they	existed	before,	fills	them	with	zero,	and	sets	flags	"not	available".

Compute	TSys	MOdel

Task	tsmo	computes	the	so-called	modeled	Tsys.	This	task	works	in	two	modes,	"elevation"	mode	and	"if"	mode.

In	the	"if"	mode	the	task	flags	Tsys	values	that	violate	the	assumption	that	the	ratio	of	Tsys	between	IFs	of	the	specified	band	is	constant	in	time	for	a	given	experiment.	First,	PIMA	finds	the	reference	IF
within	the	band	specified	by	keywords	BEG_FRQ	and	END_FRQ.	It	tries	the	IFs	one	by	one.	It	computes	the	logarithms	of	the	the	ratio	of	Tsys	of	a	given	IF	to	the	Tsys	of	the	reference	IF,	finds	the	median
ratio,	computes	the	rms	of	the	deviation	and	removes	the	outliers	that	are	FRIB.NOISE_NSIGMA	times	greater	than	the	rms.	The	trial	reference	IF	that	has	the	minimum	number	of	outliers	becomes	the
reference	IF.	After	that	PIMA	computes	the	average	Tsys	ratios	and	stores	flags.	In	a	case	if	for	a	given	observation	Tsys	at	the	reference	IF	has	to	be	flagged,	a	temporary	reference	IF	is	sought.

In	the	"elevation"	mode	the	task	decomposes	Tsys	into	the	product	T_sys	=	T_o	*	a(t)	*	b(e)

where	OL>

a(t)	is	a	function	of	time	represented	by	a	linear	spline;

b(e)	is	a	function	of	elevation	represented	by	linear	spline.

T_o	is	the	minimal	system	temperature.	Functions	a(t)	and	b(e)	are	normalized	to	have	minimal	value	1.0

Parameter	T_o	and	coefficients	of	the	spline	a(t)	and	b(e)	are	found	by	iterative	non-linear	LSQ.	Outliers	are	detected	and	flagged	out	during	this	procedure.	If	tsmo	task	in	"if"	mode	ran	before,	the	input
for	this	procedure	is	the	geometric	average	of	Tsys,	except	those	that	were	previously	flagged	out,	i.e.	T	=	(Π	Tsys(i))^(1/n).	Otherwise,	Tsys	for	BEG_FRQ	is	taken.	It	is	strongly	recommended	first	to
run	tsmo	task	in	"if"	mode	and	then	in	"elevation"	mode	since	the	latter	mode	is	less	stable	to	outliers.	Potentially,	a	large	outlier(s)	can	distorts	significantly	the	solution.

After	the	task	tsmo	computes	Tsys	decomposition,	it	computes	the	so-called	modeled	Tsys	using	parameters	of	the	decomposition	for	start	and	stop	date	of	every	scan	and	stores	it	in	the	appropriate	slot.
In	addition,	PIMA	computes	so-called	cleaned	array	of	Tsys.	Cleaned	Tsys	coincides	with	modeled	Tsys	for	the	points	with	missing	or	flagged	measured	Tsys	and	coincides	with	measured	Tsys	for	all	other
points.

Task	tsmo	requires	keyword	mode	that	accepts	comma	separated	values	if	and	elev.	Unless	a	user	has	reasons	to	do	otherwise,	it	is	recommended	to	use	both	keywords:	tsmo	mode	if,elev.	When	two
values	are	specified,	PIMA	will	first	execute	Tsys	model	computation	in	the	"if"	mode	and	then	in	"elevation"	mode.

For	experiments	with	two	band,	for	instance	S/X	or	C/X,	task	tsmo	should	run	for	two	bands	separately	since	the	ration	of	Tsys	between	IFs	of	different	receivers	may	change.	Elevation	dependence	is
frequency	dependent,	and	therefore,	should	be	modeled	separately.

Results	of	task	tsmo	can	be	examined	with	task	tspl.	When	task	tspl	is	invoked	with	keyword	TSYS:	MEASURED,	it	will	show	measured	Tsys.	When	it	is	invoked	with	TSYS:	MODELED	it	will	show
modeled	Tsys.	When	it	is	invoked	with	TSYS:	CLEANED,	it	will	show	modeled	Tsys.	In	general,	TSYS:	CLEANED	is	recommended:	from	one	hand,	measured	Tsys	is	used.	From	the	other	hand,	obvious
Tsys	outliers	are	eliminated.

It	should	be	remembered	that	opal	purges	results	of	task	tsmo	and	task	load	purges	results	of	both	tasks	opal	and	tsmo.

Automatic	imaging

In	principle,	totally	automatic	imaging	is	feasible,	but	development	such	a	system	would	require	an	order	of	magnitude	more	efforts	than	it	was	invested	in	PIMA.	Therefore,	PIMA	provides	partially
automatic	imaging	capability.	In	the	framework	of	the	approach	implemented	in	PIMA,	a	user	runs	fringe	fitting,	runs	astrometry/geodesy	solution	with	Post-Solve,	runs	task	onof,	runs	splt	for	2–4

http://astrogeo.org/spd
https://atmospheric-propagation.smce.nasa.gov/
http://atmospheric-propagation.smce.nasa.gov/spd/asc/geosit
http://astrogeo.org/spd

reference	sources,	produces	their	images	manually,	runs	task	gaco,	and	then	runs	wrapper	script	pf.py	task	map.	Task	map	of	pf.py	wrapper	invokes	PIMA	task	gain,	splt,	calls	DIFMAP	in	a	batch
mode,	generates	images	of	all	sources,	and	creates	pictures	of	all	imaged	sources	in	gif	format.	pf.py	scripts	puts	calibrated	visibilities,	images,	self-calibrated	visibilities,	images,	pictures	of	source	images,
and	pictures	of	scan-averaged	flux	densities	as	a	function	of	baseline	lengths	into	directory	SSSSS/EEE_uvs,	were	SSSSS	is	the	PIMA	scratch	directory	specified	in	the	keyword	EXPER_DIR	and	EEE	is	the
experiment	name	specified	in	the	keyword	SESS_CODE.	PIMA	generates	the	for	each	source	with	enough	usable	data	the	following	files:

calibrated	visibilities	with	name	JJJJJJJJJJ_B_uva.fits
slef-calibrated	visibilities	with	name	JJJJJJJJJJ_B_uvs.fits
brightness	distributions	with	name	JJJJJJJJJJ_B_map.fits
picture	of	image	JJJJJJJJJJ_B_map.gif
picture	of	scan-averaged	self-calibrated	visibility	as	a	function	of	baseline	length	JJJJJJJJJJ_B_rad.gif

where	B	is	the	band	specified	in	keyword	BAND,

Quality	of	automatically	generated	images	not	always	satisfactory.	Most	common	reasons:	a)	not	all	visibilities	when	the	antennas	were	off	are	filtered	out;	b)	visibilities	at	some	IFs	require	significant
corrections,	say	more	than	50%,	c)	non-detection	visibilities	used	by	splt;	d)	the	source	is	larger	than	the	default	field	of	view.	Therefore,	automatically	generated	images	require	scrutinizing.
Recommended	approach:	an	analyst	using	utility	gqvew	screens	pictures	of	images	and	self-calibrated	visibilities	and	selects	those	sources	which	images	look	suspicious.	These	selected	sources	are
imaged	manually.	It	is	recommended	to	adhere	the	same	name	conventions	of	output	files	that	PIMA	uses.

Re-fringe	the	data	using	results	of	astrometry/geodesy	solution

In	general,	an	iteration	PIMA	→	Post-Solve	→	PIMA	is	required.	Interactive	Post-Solve	is	used	for	a)	setting	up	parameterization;	b)	outliers	elimination;	c)	re-weighting;	d)	setting	up	constraints.	Results
of	Post-Solve	are	written	in	the	database	during	operation	"database	update"	(Cntrl/U).	Observation	suppression	status	is	kept	in	the	database.	This	information	can	be	extracted	and	used	for	excluding
suppressed	observations	by	task	splt.	Sole	suppresses	observations	with	residuals	greater	than	some	limit,	typically	3–4	σ.	There	are	several	reasons	why	an	observation	may	have	a	large	residual:	a)
deficiency	in	the	theoretical	model;	b)	low	fringe	rate	that	results	in	PIMA	selecting	correlation	between	phase-calibration	signal;	c)	PIMA	picking	up	a	local	maximum	in	the	Fourier	transform	of
visibilities.	If	the	residual	is	caused	by	deficiency	in	the	ionosphere	or	atmosphere	model,	such	an	observation	is	"bad"	for	astrometry/geodesy,	but	good	for	imaging.	If	the	a	priori	source	position	used	by
PIMA	had	a	large	error,	say	more	than	0.5"–1",	a	quadratic	term	in	residual	fringe	phase	appears,	group	delay	is	biased,	and	the	SNR	is	reduced.	This	problem	can	be	alleviated	if	fringe	fitting	is	repeated
with	corrected	a	priori	source	position.	PIMA	checks	the	difference	between	the	source	position	used	by	the	correlator	and	the	a	priori	used	by	PIMA	that	it	takes	from	the	supplied	catalogue.	If	the
differences	exceeds	a	certain	threshold	PIMA	computes	phase	correction	that	compensate	the	quadratic	term.	This	usually	fixes	the	problem.	NB:	the	dataset	should	be	reloaded	in	order	to	change	in	the
a	priori	source	catalogue	to	take	effects.	Similarly,	if	a	source	position	used	by	the	correlator	was	correct,	but	the	source	position	in	the	PIMA	catalogue	is	wrong,	f.e.	due	to	a	typo	or	wrong	source
association,	PIMA	will	apply	wrong	correction	and	may	spoil	data	that	are	good	otherwise.

If	an	observation	is	suppressed	because	PIMA	picked	wrong	maximum	in	the	Fourier	transform	of	visibilities,	it	is	possible	to	correct	it.	We	can	predict	group	delay	rather	precisely	after	Post-Solve
solution:	several	nanoseconds	at	2	GHz	and	several	hundreds	picoseconds	at	8	GHz	and	higher.	Therefore,	we	can	guide	PIMA	where	to	search	for	the	maximum	and	fringe	affected	data	once	more.	This
procedure	is	called	re-fringing.

Solve	has	a	special	mode	that	prints	residuals	and	a	priori	delay	computed	by	VTD.	To	turn	this	mode,	hit	key	A	at	the	"Last	page"	menu	and	rewind	spool	file	(Find	"menu	1"	set	(C)hange	Spooling	current:
on	and	hit	key	;	to	rewind	the	spool	file	with	solution	listing,	i.e.	to	purge	its	previous	contents.	After	that	just	run	LSQ	solution	by	hitting	key	Q,	scroll	the	listing	by	hitting	blank	key	two	times	and	leave
Post-Solve	by	hitting	key	T.	Then	copy	the	spool	file	into	the	experiment	directory	under	name	EEE_B_init.spl,	where	EEE	is	the	experiment	name	and	B	is	band.	Using	information	in	the	residual	file,
one	can	construct	command	line	for	PIMA	with	modified	keywords	FRIB.DELAY_WINDOW_CENTER,	FRIB.RATE_WINDOW_CENTER,	FRIB.DELAY_WINDOW_WIDTH,	FRIB.RATE_WINDOW_WIDTH
in	such	a	way	that	PIMA	will	search	for	the	maximum	within	1–3	ns	of	the	group	delay	predicted	on	the	basis	of	Post-Solve	solution.	Program	samb	that	is	a	part	of	Post-Solve	package	does	this	for	you.

Usage:

	samb	-p	{pima_control_file}	-w	{window_semi_width_in_nsec}	-s	{snr_min)	
						-r	{residual_file}	-o	{output_file}

Parameter	pima_control_file	is	the	name	of	PIMA	control	file.	Parameter	window_semi_width_in_nsec	is	new	window	for	group	delay	search.	Recommended	value	is	5	times	the	wrms	of	residuals.
Parameter	snr_min	is	the	new	SNR	limit.	Recommended	value	4.8.	Parameters	residual_file	is	the	fike	with	residuals	generated	by	Post-Solve.	Finally,	parameter	output_file	specifies	the	name	of
the	output	command	file.

Program	samb	analyzes	the	file	with	Post-Solve	residuals,	finds	outliers	marked	by	character	>	or	R	in	the	8th	column,	computes	the	expected	residual	group	delay	delay	with	respect	to	the	a	priori	model
used	by	the	correlator,	which	in	general	is	different	than	a	priori	models	used	by	VTD	plus	adjustments	found	by	Post-Solve,	and	uses	this	value	for	FRIB.DELAY_WINDOW_CENTER	argument	for	PIMA
command	line	for	re-fringing.

We	need	to	save	Post-Solve	solution	before	running	PIMA	by	hitting	CNTRL/U	key.	Then	we	execute	the	command	line	generated	by	PIMA.	Re-fringing	may	or	may	not	find	correct	maximum	in	the
Fourier	transform	of	visibility	data.	The	control	file	generated	by	samb	writes	the	results	in	file	VVVVV/EEE/EEE_B_refri.fri	and	residuals	in	VVVVV/EEE/EEE_B_refri.frr,	where	VVVVV	is	the	PIMA
scratch	directory,	EEE	is	the	experiment	name	specified	in	the	keyword	SESS_CODE	of	the	PIMA	control	file,	and	B	is	the	band	name.

Next	step	is	to	extract	records	in	the	output	fringe	output	and	fringe	residual	files	generated	by	the	command	file	created	by	samb,	and	to	add	those	that	have	SNR	greater	than	the	limit	specified	by	samb
command	to	the	end	the	main	fringe	results	and	fringe	residual	files.	Remember,	process	fringe	results	file	consecutively.	If	there	is	more	than	one	record	corresponding	to	the	same	observation,	the	latest
record	overrides	the	previous	record(s).

Next	step	is	to	create	a	GVF	database	using	updated	files	with	fringe	results	and	fringe	residuals	with	PIMA	task	mkdb.	There	is	a	caveat.	When	we	updated	the	database,	it	stores	auto	suppression	and
user	suppression	flags.	These	flags	store	the	status	of	observations	before	re-fringing.	Re-fringing	may	change	observation	status:	an	observation	that	was	considered	non-detection	in	the	first	fringing,
may	become	detected	in	the	re-fringing.	Post-Solve	does	not	allow	to	change	status	of	an	observation	marked	as	non-detection.	Program	gvf_supr_promote	solves	this	problem.	It	updates	flags	"not
detected".	If	an	observation	was	not	detected	in	the	first	fringing,	but	detected	during	re-fringing,	the	flag	"not	detected"	is	cleared	and	flag	"suppressed"	is	set.	Program	gvf_supr_promote	is	a	part	of
Post-Solve.	It	accepts	the	full	database	name,	including	and	extension	.env,	as	an	argument.	Alternatively,	the	same	operation	can	be	performed	with	wrapper	pu.py.	Wrapper	pu.py	has	two	arguments:
experiment	name	and	band.

Operations	samb,	PIMA,	and	update	of	suppression	flags	can	be	performed	with	wrapper	pr.py.	Wrapper	pr.py	requires	as	the	first	argument	the	experiment	name,	as	the	second	argument	low	case
band,	as	the	third	argument	the	SNR	limit.	Depending	on	band,	pr.py	will	select	delay	window	semi-width.	The	delay	semi-width	can	be	overridden	with	optional	argument	-delwin.	Optional	flag	-nodb
causes	the	wrapper	to	update	only	fringe	results	without	creation	of	a	database.	This	option	is	necessary	when	a	low	band	of	a	dual-band	experiment	is	re-fringed.

After	the	database	is	updated,	it	should	be	processed	with	Post-Solve	once	more.	Some	observations	that	were	previously	suppressed	as	outliers	(ideally	all)	can	be	restored.	Observations	that	were
considered	as	non-detections	and	therefore	were	considered	as	unrecoverable	if	detected	during	re-fringing	appears	as	"bad",	but	recoverable.	Post-Solve	program	ELIM	in	restoration	mode	should	be
executed	and	the	database	be	updated.	Usually,	there	is	no	need	to	make	a	next	iteration,	unless	an	error	has	been	made	that	should	be	corrected.

Data	analysis	pipeline

The	recommended	pipeline	consists	of	three	steps:	1)	fringe	fitting;	2)	astrometry/geodesy;	3)	imaging.	Step	astrometry/geodesy	can	be	used	for	imaging	analysis	or	can	be	skipped.

Fringe	fitting	pipeline

1.	 Create	PIMA	configuration	file	for	the	experiment.

2.	 Load	FITS-IDI	data.	Command:	pf.py	EEE	B	load.

3.	 Parse	log	files.	Not	needed	for	processing	VLBA	data	after	2014.	Command:	pf.py	EEE	B	logs.

4.	 Load	calibration	information	into	PIMA	internal	data	structure.	Not	needed	for	processing	VLBA	data	after	2014.	Command:	pf.py	EEE	B	gean.

5.	 If	all	phase	calibration	tones	are	extracted,	run	automatic	phase	calibration	masking	with	PIMA	task	gepm,	then	examine	phase-cal	with	PIMA	task	mppl.	Check	phase	cal	tones	for	all	the	stations.
If	additional	spurious	signals	are	found,	add	the	infected	tones	to	the	mask	definition	file	and	translate	the	mask	definition	file	to	a	phase	cal	mask	using	task	pmge.	Iterate	the	process	till	plots	of
phase	calibration	show	satisfactory	results.	If	1	or	2	tones	are	IF	are	extracted,	check	phase	calibration	with	task	pcpl.	If	phase	calibration	for	some	stations	is	too	noisy,	disable	phase	cal	for	these
stations	with	task	gean.

6.	 Rug	coarse	fringe	fitting.	Command:	pf.py	EEE	B	coarse.

7.	 Run	bandpass	generation	in	the	inspection	mode.	Command	pf.py	exp	band	bpas	-insp	To	examine	cross	and	auto	spectrum.	To	create	bandpass	mask	definition	file.	Transform	mask	definition	file

into	the	bandpass	mask	file	with	command	bmge.	Run	command	pf.py	EEE	B	bpas	-insp.	again	and	check	that	masking	bad	auto-	and	cross-	correlation	channels	fixed	the	problem.	Update	the	band
definition	file	if	needed	and	iterate.

8.	 Run	bandpass	generation	in	the	non-interactive	mode.	Examine	the	log.	Check	observations	that	are	marked	as	outliers.	If	needed,	update	the	mask	definition	file,	disable	phase	calibration,	and
repeat.

9.	 Run	fine	fringe	fitting	in	fine	mode.	Command:	pf.py	EEE	B	bpas	fine.

Pipeline	for	astrometry/geodesy	data	analysis

This	pipeline	runs	after	the	fringe	fitting	pipeline.

1.	 Export	the	results	of	fringe	fitting	into	GVF	database.

2.	 Run	astrometry/geodesy	solution	using	VTD/Post-Solve.

3.	 Suppress	outliers	that	include	but	not	limited	to	non-detections	using	Post-Solve.

4.	 Store	the	GVF	database	using	Post-Solve.

5.	 Store	the	full	residual	file

6.	 Run	Post-Solve	program	samb	that	generates	the	control	file	that	calls	PIMA	for	re-fringing	suppressed	observations;	run	re-fringe	with	PIMA;	select	the	observations	with	SNR	above	the	detection
threshold	and	append	fringe	results	for	these	observations	to	the	end	of	fringe	file;	create	a	new	GVF	database	version	1	using	PIMA	task	mkdb;	propagate	auto	suppression	status	to	the	database.
All	these	steps	are	executed	by	wrapper	pr.py.

7.	 Run	VTD/Post-Solve	solution	once	again.	Suppress	outliers	and	restore	good	observations	marked	as	outliers.

Imaging	pipeline

It	is	recommended	to	run	imaging	pipeline	after	fringe	fitting	pipeline	and	astrometry/geodesy	pipeline.	The	latter	pipeline	allows	you	to	effectively	filter	out	non-detections	and	corrupted	observations,
f.e.	observations	where	the	fringe	fitting	algorithm	found	the	maximum	that	corresponds	to	correlation	of	phase	calibration	signal.	Though	it	is	possible	to	skip	astrometry/geodesy	pipeline,	but	in	that
case	you	need	to	screen	observations	for	non-detections	or	observations'	where	fringe	fitting	failed.	Setting	a	higher	SNR	limit	in	a	range	6.0–6.5	seems	prudent.	NB:	even	one	non-detection	that	slipped
into	the	dataset	may	severely	distort	an	image.

1.	 Import	gain	table.

2.	 Run	PIMA	task	onof.

3.	 Extract	indices	of	suppressed	observations	in	VTD/Post-Solve	solution	in	an	ascii	to	use	this	file	as	value	of	the	keyword	EXCLUDE_OBS_FILE.

4.	 Import	antenna	gain.

5.	 Select	2–5	strong	sources	that	were	observed	at	all	baselines.	Run	task	splt	for	these	sources.	Check	splt	logs.	If	there	are	observations	with	large	residual	group	delays,	add	their	indices	to	the	file
pointed	by	keyword	EXCLUDE_OBS_FILE,	and	repeat	task	splt	one	more	time.

6.	 Image	selected	sources.

7.	 Run	task	gaco	for	imaged	sources.	Examine	gain	correction	file	and	edit	it,	if	necessary.

8.	 Run	task	splt	for	all	the	sources.	Check	splt	logs.	If	there	are	observations	with	large	residual	group	delays,	add	their	indices	to	the	file	pointed	by	keyword	EXCLUDE_OBS_FILE,	and	repeat	task	splt
one	more	time.

9.	 Image	all	the	sources.	You	may	want	to	copy	to	another	directory	results	of	imaging	strong	calibrator	that	you	run	before,	since	PIMA	will	overwrite	them	otherwise.

10.	 Create	pictures	of	the	brightness	distribution	of	the	imaged	sources.

The	three	last	three	steps	are	performed	by	wrapper	pf.py	EEE	B	map.

Running	the	analysis	pipeline	with	pir.py

Program	pir.py	is	provided	for	facilitating	running	the	VLBI	analysis	pipeline	in	the	semi-automatic	fashion.	As	of	2021,	the	fully	automated	mode	is	not	yet	implemented.	However,	pir.py	substantially
reduces	the	amount	of	manual	work.	It	executes	elements	of	the	VLBI	data	analysis	pipeline.	In	total,	there	are	16	elements.	Elements	can	be	executed	separately,	or	in	the	group,	or	all	together.

			usage:	pir.py	[-h]	[--version]	[-v	verbosity]	[-b	band]												
																	[-r	run-level]	[-s]	experiment

where	experiment	is	the	experiment	code	following	either	NRAO,	or	KVN,	or	IVS,	or	KaVA,	or	EAVN	notation.

parameter	--verbosity	controls	verbosity	of	the	output.

0	--	silent

1	--	normal	verbosity	(defaults)

2	--	debugging	mode.

parameter	--band	specifies	the	1-character	long	band	name.	If	the	experiment	has	two	bands,	the	code	for	the	upper	band	should	be	used.

parameter	--run-level	controls	which	elements	or	a	group	of	elements	of	the	VLBI	data	analysis	pipeline	should	be	executed.	The	run-level	is	either	a	positive	number	when	an	elementry	run	level	is
specified	or	a	low	case	letter	if	a	compound	run	level	is	selected.	See	the	next	subsection.

If	parameter	-s	was	specified,	statically	linked	PIMA	will	be	used.

If	the	experiment	has	data	from	two	bands,	both	bands	will	be	processed	to	enable	the	use	of	ionosphere-free	combinations	of	group	delay	observables.	The	upper	band	should	be	specified	when	running
pir.py.

Limitations:

1.	 The	full	end-to-end	pipeline	without	manual	intervention	is	not	yet	feasible.	More	work	needs	be	done	to	implement	it.	As	of	version	1,	there	are	several	breaking	points	that	assume	manual	work.

2.	 As	of	version	1,	lin-pol	4	band	observations	are	not	yet	supported.

pir.py	run	levels

Program	pir.py	splits	the	VLBI	data	analysis	pipeline	into	a	number	of	run	levels.	The	run	levels	are	supposed	to	be	executed	in	the	defined	order	because	results	from	the	previous	run	levels	are	used	for
the	next	run	level.	The	run	levels	can	be	elementary	or	compound.	Compound	run	levels	combine	several	elementary	run	levels.	The	granulation	of	the	pipeline	into	elementary	and	compound	run	levels
provides	flexibility.	For	some	data	analysis	scenarios	compound	run	levels	can	be	used,	for	other	scenarios	additional	programs	need	run	between	elementary	run	levels.

The	following	run	levels	are	supported:	

1.	 Load	the	experiment	to	PIMA.

2.	 Generate	bandpass	and	phase	calibration	masks	from	mask	definitions	files.

3.	 Parse	logs	and	load	information	extracted	from	logs	to	PIMA.

4.	 Run	coarse	fringe	fitting.

5.	 Run	bandpass	generation.

6.	 Run	fine	fringe	fitting.

7.	 Run	creation	of	an	output	GVF	database.

8.	 Run	pSolve	using	version	2	of	the	GVF	database	and	generate	listing	of	the	solution.	NB:	It	is	assumed	interactive	data	preprocessing	with	pSolve	has	been	done	prior	that	step.

9.	 Run	re-fringing	of	the	observations	marked	as	outliers	during	preprocessing.

10.	 Run	creation	of	an	output	GVF	database	with	re-fringed	data.

11.	 Run	task	onof	to	determine	segments	of	data	when	antenna	was	not	on	source.

12.	 Run	computation	of	atmosphere	brightness	temperature	and	opacity	using	the	output	of	numerical	weather	model.	NB:	You	need	to	have	the	preprocessed	output	of	the	output	of	numerical	weather
model	at	your	local	computer	to	run	this	task.	Automatic	downloading	these	data	will	be	implemented	in	the	future.

13.	 Run	loading	atmospheric	opacity	and	brightness	temperature	followed	by	automatic	editing	of	raw	Tsys	values.

14.	 Generate	images	of	the	sources	selected	as	reference.

15.	 Run	gain	correction	computation	using	images	of	reference	sources.

16.	 Run	automatic	imaging.

The	following	compound	run	levels	are	supported:

l	—	extended	loading.	It	combines	1,2,3	and	performs	loading	the	experiment,	generation	of	the	bandpass	and	phase	calibration	masks	from	mask	definitions	files,	parsing	Fields	System	log	files,	and
loading	extracted	calibration	information	into	PIMA.

c	—	coarse	fringe	fitting.	The	same	as	4.

b	—	bandpass	computation.	The	same	as	5.

f	—	fine	fringe	fitting.	Includes	fine	fringe	fitting	and	generation	of	the	GVF	database	at	the	end.	Combines	6	and	7.

r	—	re-fringing.	It	runs	pSolve	solution,	uses	pSolve	residuals	to	generate	control	files	for	re-processing	the	outliers	of	the	pSolve	solution	with	a	narrow	window,	runs	re-fringing,	and	generates	the
re-fringed	database.	Combines	8,	9,	and	10.

p	—	pre-imaging.	Includes	determination	of	data	segments	when	antennas	were	not	on	source;	computation	of	the	atmospheric	opacity	and	brightness	temperature;	automatic	editing	Tsys	that
includes	outlier	elimination	and	interpolation	of	bad	or	missing	Tsys;	loading	modeled	Tsys	into	PIMA;	getting	gain	and	loading	into	PIMA;	and	generation	of	files	with	time	and	frequency	averaged
data	in	FITS	image	format	for	reference	sources.	Combines	10,	11,	12,	13,	and	14.

i	—	imaging.	Includes	computation	of	gain	correction,	calibration	of	the	data,	time	and	frequency	averaging,	splitting	the	data	into	calibrated	FITS-file,	one	file	per	source	and	band,	automatic	image
generation	with	Difmap,	and	generation	of	rad	plot	and	PostScript	pictures	from	images.	Combines	15	and	16.

Hints	for	pir.py	use

The	pipeline	execution	still	requires	manual	steps.	pir.py	reduces	the	number	of	manual	operations	to	the	minimum	and	automatically	runs	other	steps.	The	following	sequence	is	recommended:

(manual)	Download	the	data	and	create	PIMA	control	file.	This	step	is	done	manually	for	processing	a	new	style	of	an	experiment.	For	processing	an	experiment	from	a	campaign	that	contains
many	segments,	this	step	can	be	easily	automated.	That	includes	downloading	the	data	and	generation	of	PIMA	control	files,	bandpass	and	phase	calibration	masks	from	templates.	The	template
defines	most	of	the	parameters	using	the	control	files	used	for	processing	a	specific	experiment.	The	rest	of	the	parameters,	such	as	experiment	name	and	observing	dates,	can	by	automatically
updated	by	a	simple	program.

(automatic)	After	the	visibility	file	in	FITS-IDI	format	and	VLBI	Field	System	logs	are	downloaded	and	named	according	to	the	convention	PIMA	and	Psolve	understand,	task	pir.py	with	run	level	l
is	executed.

(manual)	Phase	cal	examination.	It	is	recommended	to	run	manually	tasks	plcl	and	mppl.	The	goals	is	a)	to	update	pcal	mask	file;	b)	to	find	stations	for	which	phase	calibration	is	bad	and	needs	be
disabled.	The	stations	with	disabled	phase	calibration	are	included	in	as	a	comma-separated	qualifier	of	PCAL:	keyword	value.	NB:	If	you	want	to	disable	phase	calibration	for	a	2-band	experiment,
do	not	forget	to	update	PIMA	control	files	for	each	band.	It	is	advised	to	run	pt.py	for	several	scans	of	strong	sources	to	catch	other	problems	than	may	require	editing	of	control	files.

(automatic)	Run	pir.py	with	run	level	c	to	perform	coarse	fringe	fitting.	NB:	if	you	have	a	dual-band	experiment,	the	upper	band	should	be	specified.	This	will	cause	pir.py	to	process	both	bands	in
parallel.

(manual)	Phase	cal	examination.	It	is	recommended	to	run	manually	tasks	bpas	via	wrapper	pt.py	with	qualifier	-insp.	You	need	decide	whether	you	need	adjust	bandpass	mask,	for	instance	to
mask	out	affected	IFs	either	partially	or	entirely.

(automatic)	Run	pir.py	with	run	level	b.	This	will	generate	bandpass	file,	and	for	dual-band	experiment,	the	polarization	bandpass	as	well.

(manual)	Examine	bandpass	logs.	If	bandpass	logs	show	problems,	you	may	need	adjust	control	files	and/or	bandpass	or	phase	calibration	masks.

(automatic)	Run	pir.py	with	run	level	f.	This	will	perform	fringe	fitting	and	generate	version	1	of	the	experiment	geodetic	database.

(manual)	Run	pSolve	in	the	mode	of	interactive	preprocessing.	Refer	pSolve	documentation.	You	need	edit	both	bands	of	the	dual-band	experiment,	At	the	end	you	need	update	the	database.

(automatic)	Run	pir.py	with	run	level	r.	This	will	cause	re-fringing	of	all	observations.	The	geodetic	database	will	be	automatically	updated,	but	the	suppression	status	will	not.

(manual)	Load	version	2	of	the	experiment	and	restore	good	observations	that	appear	after	re-fringing	using	pSolve.	Save	updated	database.	Geodetic	part	of	the	processing	is	completed.

If	you	will	image	observed	sources,	you	need	prepare	files	with	2–4	reference	sources	at	this	point.	Remember,	these	files	have	suffices	_{band}_ref.sou,	where	{band}	is	a	band.

(automatic)	Run	pir.py	with	run	level	p.	This	will	execute	task	onof,	update	Tsys,	and	generate	files	with	time	and	frequency	averaged	calibrated	visibility	in	FITS	image	format	for	reference
sources.

(manual)	Image	reference	sources	using	Difmap.

(automatic)	Run	pir.py	with	run	level	i.	This	will	automatically	generate	images	of	all	the	sources	and	generates	source	picture	files	in	GIF	format.

(manual)	Manually	examine	the	images.	Re-image	manually	poor	images.

Processing	dual-band	observations

Dual-band	observations	are	processed	separately.	Though	in	some	cases	it	is	possible	to	run	fringe	fitting	over	a	very	wide	bandwidth	(several	GHz),	in	that	case	this	would	be	called	wide-band	fringe
fitting.	Depending	on	the	correlator	setup	dual-band	data	can	be	be	put	in	one	frequency	group,	f.e.	VLBA	S/X	observations	or	observations	at	remote	wings	of	VLBA	C-band	receivers	or	be	put	into	two
different	groups.	If	the	frequency	layout	is	not	known,	the	following	parameters	should	be	set	FRQ_GRP:	1,	BEG_FRQ:	1,	END_FRQ:	1	before	loading	the	experiment	in	PIMA.	After	that,	a	user	should
examine	the	frequency	file	SSSSS/EEE.frq	created	by	PIMA	task	load	and	create	two	PIMA	control	files	for	the	upper	and	lower	bands.	The	upper	band	is	considered	primary	band	and	the	low	band	is
considered	secondary	band.	Keywords	BAND,	FRQ_GRP,	BEG_FRQ,	END_FRQ	should	define	frequency	names	frequency	indices	within	the	frequency	band.	The	control	file	of	the	primary	(upper)
frequency	band	should	define	the	name	of	the	PIMA	control	file	for	the	secondary	(lower)	frequency	band	in	the	keyword	MKDB.2ND_BAND.	The	value	of	this	keyword	should	be	NO	in	the	control	file
for	the	lower	band.

PIMA	task	load,	gean,	pmge,	bmge	are	band-independent;	other	tasks	depends	on	the	band	an	should	be	executed	with	the	appropriate	control	file.	All	operations	in	PIMA	pipeline,	except	tasks	load,
gean,	pmge,	bmge,	and	mkdb	are	performed	two	times:	first	for	lower	band	and	for	upper	band.	They	can	run	concurrently.	Bandpass	and	phase	calibration	mask	files	are	common	for	both	bands.	Task
mkdb	should	be	run	for	the	upper	band	only.	When	PIMA	finds	value	of	MKDB.2ND_BAND	that	is	the	PIMA	control	file	for	the	lower	band,	it	computes	the	total	observables	of	two	control	files	and	puts
them	in	appropriate	slots	of	GVF	database.	NB:	PIMA	does	not	check	which	band	is	upper	and	which	band	is	lower	frequency	—	an	analyst	should	define	it.	If	to	run	PIMA	task	mkdb	with	the	control	file
for	the	lower	band,	PIMA	will	create	the	GVF	with	total	observables	only	for	that	band.	For	historical	reasons	Post-Solve	always	marks	the	upper	band	as	"X"	and	lower	band	as	"S"	regardless	the
frequency	range.

Tasks	coarse	fringe	fitting,	bandpass	generation,	and	fine	fringe	fitting	is	executed	two	times,	for	lower	and	upper	band.	Task	mkdb	is	executed	once	for	the	upper	band	control	file	only.	The	GVF
database	created	in	the	dual-band	mode	contains	the	data	for	both	bands.	Using	VTD/Post-Solve	two	bands	are	processed	consecutively,	first	the	lower	band	marked	as	"S"	(Data	type	"GS"),	then	the	upper
band	marked	as	"X"	(Data	type	"GX").	Two	files	with	residuals	are	created:	the	upper	band	and	for	the	lower	band.	Then	wrapper	pr.py	is	executed	for	both	bands:	first	for	the	lower	band	and	then	for	the
upper	band.	Option	-nodb	should	be	used	with	the	wrapper	for	the	lower	band.	This	option	prevents	creation	of	a	database	for	the	lower	band,	since	such	a	database	would	not	have	the	data	for	the
upper	band.	After	wrapper	pr.py	for	the	lower	band	is	completed,	wrapper	pr.py	for	the	upper	band	is	executed.	During	next	VTD/Post-Solve	iteration	lower	band	and	upper	band	data	are	re-analyzed.
After	that	a	liner	combination	of	the	upper	and	lower	band	data	(Data	type:	"G_GXS")	are	analyzed.

Imaging	the	upper	and	lower	bands	is	done	separately.	Gain	control	files	should	be	separate	for	upper	and	lower	bands.

Although	GVF	format	allows	to	support	up	to	8	bands,	as	of	2016.05.05,	VTD/Post-Solve	supports	only	two	bands.	An	experiment	with	more	than	two	frequency	bands	is	processed	similarly	as	a	dual-band
experiment	except	MKDB.2ND_BAND	keyword	that	should	be	NO.	In	such	case	the	keyword	MKDB.OUTPUT_NAME	that	defines	the	database	suffix	should	be	different	for	each	band.	Otherwise,	PIMA
task	mkdb	will	overwrite	a	database	for	a	different	band.

Auxiliary	tools

PIMA	provides	a	number	of	tools	for	examining	the	data.

Antenna	log	processing	tool

Program	log_to_antab	processes	input	log	files	generated	by	software	Field	System	and	writes	results	in	PIMA	Antab	format.

									Usage:	log_to_antab	mode	log_file	antab_file		[year]

There	are	three	mandatory	arguments:

mode	—	a	flavour	of	log	file.	Supported	modes:

mode	=	1	—	for	IVS	log-files	after	2008.

mode	=	2	—	for	IVS	log-files	in	approximately	1999–2002.

mode	=	3	—	for	IVS	log-files	in	approximately	1996–1996.

mode	=	4	—	for	IVS	log-files	in	approximately	1996–1999.

mode	=	5	—	DBBC	log	file	with	USB/LSB	pairs	of	BBCs.

mode	=	11	—	for	KVN	log-files

log_file	—	file	with	the	log.

antab_file	—	output	file	with	results	of	log	file	processing.

antab_year	—	year	of	observations.	Old	log	files	did	not	provide	year	in	the	time	tag.	This	optional	argument	provides	missing	information.

Tools	for	examining	data	in	FITS-IDI	format

When	you	receive	the	data	from	the	experiment	that	you	intend	to	analyze,	you	first	need	to	examine	the	data.	NB:	PIMA	processes	data	only	in	FITS-IDI	format.	PIMA	provides	several	utilities	that	are
useful	for	an	initial	data	check.

fitsh	—	a	tool	that	prints	the	contents	of	FITS	headers.	It	scans	all	tables	and	prints	the	list	of	keywords,	their	format	and	values	of	keywords	(but	not	contents	of	the	tables).

									Usage:	fitsh	fits_file

fitsd	—	a	tool	that	examines	a	directory	with	files	in	FITS-IDI	format	and	prints	start	and	stop	epochs	of	visibilities	that	each	file	contains.

									Usage:	fitsd	directory	file

get_source_table_from_fits	—	a	tool	that	prints	the	names	and	coordinates	of	the	sources	that	are	in	the	specified	FITS-IDI	file.

									Usage:	get_source_table_from_fits	fits_file

Tools	for	manipulation	with	data	in	FITS	image	format

There	is	a	number	of	tools	for	processing	image	data	in	FITS	image	format.	NB:	these	tools	will	work	with	the	data	generated	by	PIMA,	AIPS,	and	DIFMAP.	They	may	or	may	not	work	with	data	generated
by	other	programs.	There	are	two	level	specifications:	FITS	and	contents	definition.	FITS	format	defines	only	the	data	structure	at	the	lower	level.	This	information	is	not	sufficient	to	parse	arbitrary	FITS-
file	without	knowledge	of	contents	definition	specifications.

There	are	four	contents	definitions	formats	that	PIMA	deals	with:

1.	 FITS-IDI	—	format	for	correlator	output.	PIMA	reads	this	data	when	executes	task	load.	Data	in	FITS-IDI	format	contain	visibilities	and	a	lot	of	information	that	describes	the	experiment.

2.	 FITS-UVA	—	(UV	Averaged)	format	for	calibrated	visibilities	averaged	over	time	and	frequency.	PIMA	task	splt	writes	the	data	in	this	format.	FITS-UVA	data	contains	visibilities,	frequency	table	and
information	about	experiment	(name,	date,	etc).	It	may	or	may	not	contain	gain	a	correction	table.	PIMA	adheres	file	naming	convention	JJJJJJJJJJ_B_uva.fits	for	FITS	averaged	visibility	data,
where	JJJJJJJJJJ	is	a	10	character	long	J2000	source	name	and	B	is	the	upper	case	band	name.

3.	 FITS-UVS	—	(UV	Self-calibrated)	format	is	the	same	as	FITS-UVA,	but	it	contains	self-calibrated	visibilities	after	imaging.	Visibility	amplitudes	and	phases	are	corrected	by	the	imaging	process.	PIMA
adheres	file	naming	convention	JJJJJJJJJJ_B_uvs.fits	for	self-calibrated	visibility	data.

4.	 FITS-MAP	—	format	is	for	storing	images.	It	contains	several	tables:	Clean	component	table,	frequency	table	and	the	gridded	image.	It	also	contains	some	auxiliary	information:	source	name,	source
position,	experiment	date,	beam	size,	etc.	NB:	gridded	image	is	derived	from	Clean	components.	It	does	not	bring	additional	information	and	is	included	to	facilitate	visualization.	General	purpose
FITS	viewers	will	show	image	in	FITS-MAP	format.

The	following	tools	are	provided:

uva_merge	—	utility	for	merging	several	FITS-UVA	visbility	data	files	into	one,	provided	the	data	have	the	same	frequencies.	Merged	data	may	have	better	uv-coverage	and	this	operation	usually
improves	image	quality.	Since	sources	are	often	variable,	merging	the	data	for	sources	with	images	that	changed	is	not	recommended.	For	majority	of	AGNs	merging	the	data	with	epochs	within
several	months	is	usually	safe.

Usage:

										uva_merge	uva_output	input1_uva	[input2_uva	...]

Up	to	30	FITS	files	can	be	merged.	The	order	of	input	files	does	not	matter.	Do	not	forget	that	the	output	file	comes	first!

fits_tim_avr	—	utility	for	time	averaging	FITS-UVA	calibrated	visibility	data.	The	output	is	written	in	the	file	in	fits	format.	Time	averaging	in	seconds	is	specified.	fits_tim_avr	starts	averaging
from	first	the	visibility	till	it	fills	a	chunks	of	tim_av_sec	long.	Then	it	coherently	averages,	updates	weights,	writes	down	starts	again.	Usage:	fits_tim_avr	input_uva	tim_av_sec	output_uva	where	the

ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEM114.PDF

first	argument	is	the	input	file,	the	second	argument	is	the	averaging	interval	in	seconds,	and	the	third	argument	is	the	name	of	the	output	file	in	fits	format.

Usage:

										Usage:		fits_tim_avr	input_uva	tim_av_sec	output_uva

where	the	first	argument	is	the	input	file,	the	second	argument	is	the	averaging	interval	in	seconds,	and	the	third	argument	is	the	name	of	the	output	file	in	fits	format.

fits_to_map	—	utility	for	generation	of	a	picture	of	the	brightness	distribution	using	the	Clean	component	table.	The	picture	can	be	displayed	on	the	display	or	written	in	the	output	file.

Usage:

										fits_to_map	[-o	output_file]	[-box	value]	[-size	code]	
																						[-color	code]	[-lev	value]	[-beam	code]	fits_map_file

A	mandatory	argument	is	map	file	in	FITS-MAP	format.	Options:

-o	—	the	output	file.	XW	means	display.	If	omitted,	XW	is	assumed.	Supported	extensions:

.ps	—	output	file	will	be	in	Postscript	format.

.gif	—	output	file	will	be	in	gif	format.

Unrecognized	extension	is	treated	as	Postscript.

-box	—	the	bounding	box	size,	i.e.	the	image	scale.	The	argument	specifies	the	semi-width	of	the	bounding	box	in	mas.	If	omitted,	fits_to_map	will	use	the	bounding	box	to	show	the	full	image.
NB:	setting	the	bounding	box	wider	than	the	image	size	will	increase	only	the	amount	of	wide	space,	but	will	provide	no	new	information.

-size	—	the	image	size,	one	of

1	—	45x45	mm

2	—	80x80	mm

3	—	160x160	mm

4	—	270x270	mm

Fonts	and	line	width	are	scaled	in	order	to	fit	the	sizes	above.	By	default,	image	size	is	3,	i.e.	160x160	mm.

-color	—	the	color	index	of	the	contour	map	according	to	DiaGI	in	a	range	[-1,	32].	Color	index	-1	indicates	the	color	of	the	plot	the	plot	will	be	selected	in	accordance	with	the	observing
frequency.	Color	index	0	means	black.	Program	diagi_dec	(part	of	petools)	shows	the	color	table	for	codes	in	the	range	[1,	32].	By	default,	color	index	is	-1,	i.e.	is	selected	automatically	based	on
observing	frequency.

-lev	—	the	flux	density	level	for	the	first	(lowest)	contour	expressed	in	image	root	mean	square	noise.	Default	is	5.0.

-beam	—	the	beam	style.	One	of:

0	—	elliptical	beam.	The	displayed	image	is	stored	in	the	input	FITS-MAP	file.

1	—	circular	beam.	The	size	of	the	beam	is	determined	by	the	semi-minor	axis	of	the	stored	elliptical	beam.	The	displayed	image	is	created	by	convolving	Clean	components	with	the
circular	beam.

2	—	circular	beam.	The	size	of	the	beam	is	determined	by	the	semi-major	axis	of	the	stored	elliptical	beam.	The	displayed	image	is	created	by	convolving	Clean	components	with	the
circular	beam.

3	—	elliptical	circular	beam.	The	displayed	image	is	created	by	convolving	Clean	components	with	the	elliptical	beam.

4	—	delta-function	beam.	The	displayed	image	is	created	by	convolving	Clean	components	with	the	circular	beam	equal	to	two	pixels.

fits_to_radplot	—	utility	for	generation	of	a	picture	of	the	dependence	of	scan-averaged	calibrated	visibility	versus	the	baseline	length	(so-called	"radplot").

Usage:

										fits_to_radplot	[-o	output_file]	[-size	code]	[-color	code]	
																										[-gap	time]	[-wei	T|F]	[-cutoff_err	value]	[-auto]	fits_vis_file

A	mandatory	argument	is	map	file	in	FITS-UVA	format.	Options:

-o	—	the	output	file.	XW	means	display.	If	omitted,	XW	is	assumed.	Supported	extensions:

.ps	—	output	file	will	be	in	Postscript	format.

.gif	—	output	file	will	be	in	gif	format.

.txt	—	output	file	will	be	in	plain	ascii	format.	An	ascii	table	will	be	generated	instead	of	a	figure.

Unrecognized	extension	is	treated	as	Postscript.

-color	—	the	color	index	of	the	contour	map	according	to	DiaGI	in	a	range	[-1,	32].	Color	index	-1	indicates	the	color	of	the	plot	the	plot	will	be	selected	in	accordance	with	the	observing
frequency.	Color	index	0	means	black.	Program	diagi_dec	(part	of	petools)	shows	the	color	table	for	codes	in	the	range	[1,	32].	By	default,	color	index	is	-1,	i.e.	is	selected	automatically	based	on
observing	frequency.

-size	—	the	image	size,	one	of

1	—	45x45	mm

2	—	80x80	mm

3	—	160x160	mm

4	—	270x270	mm

Fonts	and	line	width	are	scaled	in	order	to	fit	the	sizes	above.	By	default,	image	size	is	3,	i.e.	160x160	mm.

-color	—	the	color	index	of	the	contour	map	according	to	DiaGI	in	a	range	[-1,	32].	Color	index	-1	indicates	the	color	of	the	plot	the	plot	will	be	selected	in	accordance	with	the	observing
frequency.	Color	index	0	means	black.	Program	diagi_dec	(part	of	petools)	shows	the	color	table	for	codes	in	the	range	[1,	32].	By	default,	color	index	is	-1,	i.e.	is	selected	automatically	based	on
observing	frequency.

-gap	—	the	maximum	gap	between	observations	to	consider	them	to	belonging	to	one	scan.	Units:	sec.

-wei	—	to	use	(T)	or	not	to	use	(F)	weights	when	compute	scan	averaged	visibilities.

-cutoff_err	—	the	cutoff	for	discarding	points	with	excessive	scatter.	The	points	with	the	normalized	statistical	uncertainties	determined	as	Err(Amp)/Amp	exceeding	this	parameter	are	flagged
out	and	removed	from	computations.	Here	Err(Amp)	is	the	statistical	error	of	the	coherently	averaged	amplitude	determined	on	the	basis	of	the	scatter	with	respect	to	average	and	Amp	is	the
averaged	amplitude.

-auto	—	auto-detection	of	the	direction	of	minimal	scatter.	If	this	options	is	not	set	up	(default),	plot	of	calibrated	amplitude	versus	baseline	length	will	be	generated.	If	this	option	is	set,	then	a
plot	of	the	averaged	fringe	amplitude	versus	the	length	of	the	baseline	projection	to	the	direction	which	makes	the	scatter	of	the	amplitude	with	respect	to	a	smoothed	curve	minimal.

fits_to_uvplot	—	utility	for	generation	a	plot	of	baseline	vector	projection	to	the	source	tangential	plain	(so-called	uvplot).	Visibilities	are	averaged	over	a	scan.	Units	are	wavelengths.

Usage:

										fits_to_uvplot	[-o	output_file]	[-size	code]	[-color	code]	uva_fits_file

A	mandatory	argument	is	map	file	in	FITS-UVA	or	FITS-UVS	format.	Options:

-o	—	the	output	file.	XW	means	display.	If	omitted,	XW	is	assumed.	Supported	extensions:

.ps	—	output	file	will	be	in	Postscript	format.

.gif	—	output	file	will	be	in	gif	format.

.txt	—	output	file	will	be	in	plain	ascii	format.	An	ascii	table	will	be	generated	instead	of	a	figure.

Unrecognized	extension	is	treated	as	Postscript.

-color	—	the	color	index	of	the	contour	map	according	to	DiaGI	in	a	range	[-1,	32].	Color	index	-1	indicates	the	color	of	the	plot	the	plot	will	be	selected	in	accordance	with	the	observing
frequency.	Color	index	0	means	black.	Program	diagi_dec	(part	of	petools)	shows	the	color	table	for	codes	in	the	range	[1,	32].	By	default,	color	index	is	-1,	i.e.	is	selected	automatically	based	on
observing	frequency.

-size	—	the	image	size,	one	of

1	—	45x45	mm

2	—	80x80	mm

3	—	160x160	mm

4	—	270x270	mm

Fonts	and	line	width	are	scaled	in	order	to	fit	the	sizes	above.	By	default,	image	size	is	3,	i.e.	160x160	mm.

fits_to_cfd	—	utility	for	generation	a	table	of	median	correlated	flux	densities	at	three	ranges	of	baseline	projection	lengths.	The	table	has	two	rows:	a	header	and	the	body	of	the	table.

Usage:

										fits_to_cfd	[-help]	[-o	output_file]	[-wei	T|F]	[-cutoff_err	value]	fits_vis_file	fits_map_file

Mandatory	arguments	are	the	file	with	self-calibrated	visibilities	in	FITS-UVS	format	and	image	in	FITS-MAP	format.	Options:

-o	—	the	output	file.	If	omitted,	the	table	is	printed	in	stdout,	i.e.	in	the	screen.

-wei	—	to	use	(T)	or	not	to	use	(F)	weights	when	compute	scan	averaged	visibilities.

-cutoff_err	—	the	cutoff	for	discarding	points	with	excessive	scatter.	The	points	with	the	normalized	statistical	uncertainties	determined	as	Err(Amp)/Amp	exceeding	this	parameter	are	flagged
out	and	removed	from	computations.	Here	Err(Amp)	is	the	statistical	error	of	the	coherently	averaged	amplitude	determined	on	the	basis	of	the	scatter	with	respect	to	average	and	Amp	is	the
averaged	amplitude.

	

This	document	was	prepared	by	Leonid	Petrov	
Last	update:	2025.01.07

