
PIMA	Python	wrappers
Date	of	last	modification:	2023.01.08_17:19:39			

PIMA	was	designed	to	be	"scriptable",	i.e.	called	from	another	programs.	The	interface:	control	file	that	have	to	define	all	parameters,	task	and	command	line	arguments	that	override	the	keywords
defined	in	the	control	file	is	somewhat	heavy	weight.	PIMA	distribution	provides	4	scripts	and	users	are	encouraged	to	develop	their	own.	These	scripts	are	also	called	wrappers,	because	they	wrap
calls	to	various	PIMA	tasks.

Contents:

pf.py	—	general	fringe	fitting

pt.py	—	trial	fringe	fitting

pr.py	—	re-fringing

pu.py	—	update	suppression	status	after	refringing

automap.py	—	automatic	image	restoration	of	an	experiment

imadir.py	—	automatic	imaging	using	all	visibility	files	at	a	given	directory.

The	wrappers	do	not	provide	new	functionality	that	PIMA	does	not	have.	They	significantly	simplify	the	user	interface	by	expense	of	reducing	functionality	and	by	imposing	rules	on	file	names.	If	you
need	full	functionality,	for	instance	for	processing	unusual	experiment,	PIMA	wrappers	will	not	work	for	you.	But	the	use	of	wrappers	may	be	sufficient	for	processing	many	experiments.

Wrappers	assume	the	file	names	obey	the	following	convention:

PIMA	control	files	are	located	in	directory	VVVVV/EEE,	where	VVVVV	is	the	root	directory	of	vlbi	experiments	specified	by	--pima-exp-dir	during	configuration	and	EEE	is	the	experiment	name
specified	in	the	keyword	SESS_CODE	of	the	PIMA	control	file.

The	following	wrappers	are	provided:

pf.py	—	Fringe	fitting.	Includes	tasks	data	loading,	parse	log	files,	coarse	fringe	fitting,	bandpass	computation,	fine	fringe	fitting,	data	calibration	and	splitting,	generation	of	the	output	database	in
GVF	format,	auto-imaging,	generation	of	image	pictures,	etc.

pt.py	—	Trial	fringe	fitting.	Runs	a	trial	fringe	fitting	procedure	for	a	given	observation.

pr.py	—	Resolving	sub-ambiguities.	Parses	the	listing	of	the	VTD/Post-Solve	run,	generates	control	file	for	re-fringing	with	a	narrow	search	window,	executes	that	control	file,	and	updates	the
database.

automap.py	—	automatic	imaging	using	given	averaged	and	calibrated	visibility	file.

imadir.py	—	automatic	imaging	all	the	sources	with	averaged	and	calibrated	visibilities	found	in	a	given	directory.

	

pf.py	—	a	general	PIMA	wrapper.

	

usage:	pf.py	
													[-h]	[--version]	[-v	value]	[-r]	[-resume]	[-s]	[-H]
													exp	band
													{load,logs,gean,coarse,bpas,fine,mkdb,mktxt,splt,gain,autm,pict,map,sres,gaco,opal,opag}
													[opts]

The	wrapper	has	general	options	followed	by	three	mandatory	positional	arguments	followed	by	task	specific	optional	arguments.	General	options	that	follow	immediately	after	the	wrapper	name	and
before	positional	arguments:

-h	—	prints	a	brief	information	about	the	wrapper.

-H	—	print	extended	manual	(this	text)

--version	—	prints	the	wrapper	version.

-v	—	verbosity	level.	An	integer	parameter	that	describes	how	detailed	informational	messages	will	be	printed	at	the	screen.	Error	message	will	be	printed	regardless	of	verbosity	level.	pf.py	will
print.

0	—	silent	mode.	No	information	messages	are	printed.

1	—	moderate	verbosity	(default)

2	—	verbose	mode.	PIMA	commands	are	printed	at	the	screen	before	execution.

>2	—	debugging	mode.	More	verbose	than	2.

-r	—	dry	run.	pf.py	prints	commands	that	it	is	about	to	execute,	but	does	not	execute	them.

-resume	—	resume	mode.	If	pf.py	tasks	coarse,	fine,	or	allfine	have	been	interrupted,	when	pf.py	is	invoked	with	-resume	flag,	it	will	examine	fringe	file	and	fringe	residual	file.	It	will	search
backward	the	latest	full	record	and	then	restart	with	the	next	observation.	If	the	last	record	is	corrupted,	f.e.	was	written	only	partially,	pf.py	will	discard	the	corrupted	record.	prints	commands	that
it	is	about	to	execute,	but	does	not	execute	them.

-s	—	to	use	static	build	of	PIMA.	The	directory	of	the	static	build	is	defined	in	pima_local.py.	This	option	may	be	useful	when	you	have	several	versions	of	PIMA.

[opts]	—	additional	options.	Some	tasks	have	specific	options	that	starts	from	hyphen.	These	options	may	be	followed	up	by	pairs	keywords:	value,	where	keywords	is	a	recognized	PIMA	keyword.
Wrapper	pf.py	may	override	values	of	some	keywords	defined	in	the	control	file.	Values	of	the	keywords	defined	at	the	end	of	the	wrapper	command	line	have	the	highest	priority	and	override	the
values	set	by	the	wrapper.

There	are	three	mandatory	arguments:

exp	—	experiment	name	in	low	case.

band	—	band	name	in	the	low	case.

task	—	take	name.	A	task	may	follow	by	task	specific	options.	The	task	specific	options	cannot	be	be	put	before	the	task	name.

Supported	tasks:

file:///f1/progs/pima_20250228/doc/pima_wrapper.html#pf
file:///f1/progs/pima_20250228/doc/pima_wrapper.html#pt
file:///f1/progs/pima_20250228/doc/pima_wrapper.html#pr
file:///f1/progs/pima_20250228/doc/pima_wrapper.html#pu
file:///f1/progs/pima_20250228/doc/pima_wrapper.html#automap
file:///f1/progs/pima_20250228/doc/pima_wrapper.html#imadir

load	[-nopcal]	—	loading	a	database	into	internal	PIMA	data	structures.	This	task	searches	for	SSSSS/EEE_uv.exc	file.	If	such	a	file	exists,	it	purges	its	contents.	If	during	executing	PIMA	task	load
it	finds	that	there	are	bad	points,	and	the	keyword	UV_EXCLUDE_FILE:	AUTO,	it	runs	the	this	task	the	second	time,	and	if	necessary,	the	second	time.	Option	-nopcal	instructs	PIMA	not	to	load
phase	calibration.

This	task	creates	log	file	VVVVV/EEE/EEE_load.log.

logs	—	searches	for	all	log	files	in	VVVVV/EEE	directory,	parses	them	and	writes	down	in	PIMA	ANTAB	format.	This	task	assumes	log	names	are	either	in	IVS	format:	VVVVV/EEE/EEElog.SS	format,
or	VLBA	format:	VVVVV/EEE/EEESS.log,	or	in	KVN	format:	VVVVV/EEE/EEEKK.log,	where	SS	is	a	two	character	long	station	code,	KK	is	a	three	character	long	name	of	a	KVN	station:	one	of	KTN,
KUS,	or	KYS.	The	output	file	has	format	VVVVV/EEE/EEE_SS.ant.	This	task	creates	log	file	VVVVV/EEE/EEE_log_antab.log.

gean	—	this	task	searches	for	log	files	in	PIMA	ANTAB	format	generated,	for	example,	by	wrapper	task	logs	and/or	for	legacy	VLBI	log	file,	parses	them	and	loads	system	temperature,	cable
calibration	atmospheric	pressure,	air	temperature,	and	relative	humidity	into	internal	data	structure	of	PIMA.	It	searches	for	parsed	log	files	in	PIMA	ANTAB	format	with	file	names
VVVVV/EEE/EEE_SS.ant	and/or	VLBA	legacy	log	with	name	VVVVVV/EEE/EEEcal.vlba.	When	the	tasks	processes	legacy	VLBA	logs,	it	loads	phase	calibration	phase	and	amplitude	as	well	as	cable
calibration.	NB:	Legacy	log	files	should	not	be	used	for	processing	VLBA	experiments	recorded	with	a	digital	backend	since	2014.	If	FITS-IDI	files	had	calibration	information,	task	gean	overwrites	it.
This	task	creates	log	file	VVVVV/EEE/EEE_gean.log.

coarse	—	this	task	performs	fringe	search	in	the	coarse	mode.	The	goal	of	performing	coarse	fringe	search	is	a)	to	identify	failures;	b)	to	find	a	list	of	high	SNR	scans.	Coarse	fringe	search	runs	in	a
simplified	mode	in	order	to	speed	up	computations.	No	bandpass	calibration,	no	bandpass	mask,	no	phase	calibration	mask,	no	oversampling	is	applied.	Fringe	fit	uses	single	polarization	data.	Fine
fringe	fits	algorithm	uses	a	simplistic	parabolic	fit.	The	task	generates	the	output	file	with	fringe	fitting	results	with	name	VVVVV/EEE/EEE_B_nobps.fri	and	fringe	fitting	residuals	with	name
VVVVV/EEE/EEE_B_nobps.frr	overriding	names	specified	in	the	control	file	by	keywords	FRINGE_FILE	and	FRIRES_FILEpf.py	still	can	override	these	names.	The	task	creates	log	file	with	name
VVVVVV/EEE/EEE_B_coarse.log.

bpas	—	this	task	performs	computation	of	the	bandpass	and,	in	a	case	of	dual-polarization	data,	polarization	bandpass.	This	task	has	two	modes:	inspection	mode	that	is	invoked	with	option	-insp
and	production	mode.	The	task	in	the	inspection	mode	computes	bandpass	in	the	init	mode.	It	generates	two	plots	for	observations	with	the	maximum	SNR	with	at	all	baselines	with	the	reference
stations.	The	first	plot	shows	normalized	amplitude	(green),	a	model	fit	to	the	normalized	amplitude	(blue),	and	amplitude	of	auto-correlation	(red).	The	second	plot	shows	residual	phases	(green)
and	the	model	fit	to	residual	phases	(blue).	The	task	invoked	in	the	inspection	node	creates	a	bandpass	with	name	VVVVV/EEE/EEE_B_init.bps	and,	if	dual-band	data	are	processed,	the
polarization	bandpass	with	name	VVVVV/EEE/EEE_B_init_plr.bps	as	well.

When	task	is	invoked	in	the	production	mode,	i.e.	without	using	-insp	option,	it	computes	the	bandpass,	and	polarization.

fine	—	runs	fringe	fitting	in	the	fine	mode.	Unless	option	-keep	is	specified,	this	task	will	purge	fringe	file	and	fringe	residual	file	if	they	exist	before	processing	the	first	observation.	Option	-keep
suppresses	deletion	of	existing	fringe	file	and	fringe	residual	files.	The	list	of	observations	to	be	processed	is	determined	by	keywords	OBS,	INCLUDE_OBS_FILE,	EXCLUDE_OBS_FILE

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_B_fine.log.

mkdb	—	generates	of	the	output	database	in	GVF	format	using	fringe	fitting	results.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_mkdb.log.

mktxt	—	—	generates	of	the	output	database	in	TEXT	format	using	fringe	fitting	results.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_mktxt.log.

gain	—	updates	gain	table	into	internal	pima	data	structure.	The	task	checks	two	files	vlba_gains.key	and	ivs_gains.key	in	the	share	directory	specified	by	options	--pima-share	during	PIMA
installation.	The	task	does	not	issue	a	message	if	it	does	not	find	gain	information	for	one	or	more	stations,	since	this	situation	is	considered	normal.	However,	if	gain	is	missing	for	certain	stations(s),
observations	at	baselines	with	such	stations	will	not	be	used	by	task	splt,	and	therefore,	cannot	contribute	to	imaging.

This	task	updates	the	gain	only	for	frequencies	and	stations	specified	in	the	control	file	(BEG_FRQ,	END_FRQ,	FRQ_GRP)	and	found	in	the	gain	file.	Gain	for	for	other	stations	and/or	other
frequencies	remains	unchanged.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_B_gain.log.	The	log	file	contains	information	about	gain	information	in	PIMA	data	structure	after	running	this	task.	It	is	strongly	advised	to
examine	this	log	file	to	be	sure	that	correct	gain	is	applied.

splt	—	performs	calibration	of	visibilities	for	system	temperature	and	gain;	performs	amplitude	renormalization,	applies	results	of	fringe	fitting,	averages	visibilities	over	time	and	frequencies,	and
writes	calibrated	and	averaged	visibilities	into	output	files	in	FITS	format.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_B_splt.log.

autm	—	performs	automatic	imaging.	Unless	option	-sou	is	specified,	this	task	searches	for	all	fits	files	with	calibrated	and	averaged	visibilities	with	in	directory	SSSSSS/EEE_uvs	with	suffix
_uva.fits	and	runs	fringe	fitting	for	all	these	sources.	Option	-sou	followed	by	the	value	of	source	names	separated	by	comma	instructs	autm	to	perform	automatic	imaging	for	these	sources	only.
Source	names	can	be	either	in	B1950	or	J2000.	PIMA	does	not	report	an	error	if	does	not	find	one	or	more	input	files	with	calibrated	and	averaged	visibilities.

The	output	files	are	created	for	each	source:	map	in	FITS	image	format	with	suffix	_map.fits,	self-calibrated	visibilities	in	FITS-format,	and	ascii	log	file	with	suffix	dfm.log.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_autm.log.

pict	—	generate	pictures	files	in	gif	format	for	all	source	images	in	the	image	directory	for	a	given	experiment,	given	band.	This	task	searches	for	pair	of	image	file	in	FITS	format	with	suffix
_map.fits	and	self-calibrated	visibilities	with	suffix	_uvs.fits	in	image	directory	SSSSS/EEE_uvs.	It	generates	two	files	fir	each	input:	picture	of	the	image	in	gif	format	with	suffix	_map.gif	and
scan-averaged	self-calibrated	visibilities	versus	baseline	length	in	gif	format	with	suffix	_uvs.gif.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_autm.log.

sres	—	runs	task	gain	(see	above)	and	task	splt	for	reference	sources	defined	in	file	VVVVV/EEE_B_ref.sou.	The	file	may	define	sources	either	with	B1950	or	J2000	names,	one	source	per	line.	Lines
that	start	with	#	are	considered	as	comments	and	ignored.

The	task	creates	log	file	with	name	VVVVVV/EEE/EEE_sres.log.

gaco	—	computes	gain	correction	for	reference	source	defined	in	the	reference	source	file	with	name	VVVVV/EEE_B_ref.sou.	The	file	may	define	sources	either	with	B1950	or	J2000	names,	one
source	per	line.	Lines	that	start	with	#	are	considered	as	comments	and	ignored.

gepm	—	automatically	masks	phase	calibration	tones	infected	by	spurious	signals	and	identifies	epochs	at	which	clock	breaks	have	occurred.	The	task	creates	a	log	file	with	name
VVVVVV/EEE/EEE_B_gepm.log,	a	report	file	with	name	VVVVVV/EEE/EEE_B_pcal_report.gen,	an	rms	pcal	health	file	with	name	VVVVVV/EEE/EEE_B_pcal_rms.txt,	and	a	condensed	pcal
generator	file	with	name	determined	by	the	name	of	the	pcal	mask	file.

opag	—	fetches	data	file	with	opacity,	atmospheric	brightness	temperature,	slant	path	delay,	atmospheric	pressure,	partial	pressure	of	water	vapor	at	surface,	and	surface	air	temperature	from	the
remote	Web	server	and	stores	in	the	subdirectory	SSSSSS/EEE_sob.	These	datafile	are	needed	for	further	analysis	with	task	opal.

The	URL	whether	the	datafile	are	fiteched	is	spewcified	with	qualifier	--spd_url	during	PIMA	configuration	and	stored	in	pf_local.py.

class="task">opal	—	executes	two	tasks:	opal	and	tsmo.	NB:	task	opag	should	be	executed	before	running	pf.py	with	task	opal.	Task	opal	reads	the	files	with	atmospheric	opacity,	brightness
temperature	of	the	atmosphere	and	slant	path	delay	computed	on	the	elevation-azimuth-time	3D	grid	using	the	output	of	numerical	weather	models,	interpolates	these	quantities	to	the	start	and
stop	time	of	each	scan	for	each	station	and	write	them	into	the	internal	PIMA	data	structure.	After	that	pf.py	executes	PIMA	task	opal	and	computes	modeled	and	cleaned	system	temperature	for
the	main	goal	to	clean	measured	Tsys	from	outliers.	The	cleaned	and	modeled	Tsys	is	written	in	the	internal	PIMA	data	structure.	When	the	experiment	has	two	chained	bands,	task	pf.py	opal
should	be	called	specifying	the	upper	band.	Then	pf.py	examines	the	keyword	MKDB.VCAT_CONFIG	and	if	it	is	not	NO,	then	it	calls	task	tsmo	two	times:	first	for	the	lower	band,	second	for	the
upper	band.	In	that	case	cleaned	and	modeled	Tsys	will	be	computed	for	both	bands.	If	pf.py	opal	is	called	for	the	lower	band,	cleaned	and	modeled	Tsys	will	be	computed	only	for	the	lower	band
and	will	be	initialized	with	zeros	for	the	upper	band.

map	—	combines	tasks	gain,	splt,	autm,	pict.	It	is	just	consecutively	executes	these	tasks.

	

pt.py	—	trial	fringe	fitting.

This	wrapper	performs	fringe	fit	for	an	observation	with	given	index.	Fringe	results	are	written	in	/tmp/1.fri	and	fringe	residuals	are	written	in	/tmp/1.frr	overriding	keywords	FRINGE_FILE	and
FRIRES_FILE.	The	task	does	not	purge	these	files,	and	therefore,	it	appends	results	to	their	end.	Task	pt.py	shows	an	1D	plot	of	residual	phases	and	amplitudes	versus	frequency	and	a	similar	plot	of
residuals	versus	time.	Examining	fringe	plots	is	the	main	function	of	this	task.	Task	DEBUG_LEVEL:	6,	and	therefore,	it	prints	verbose	report	about	fringe	fitting.

	

usage:	pt.py	
													[-h]	[--version]	[-v	value]	[-r]	[-s]	[-H]
													exp	band	obs
													[opts]

Wrapper	has	general	options	followed	by	three	mandatory	positional	arguments	followed	by	PIMA	options	that	are	pairs	keyword:	value.	There	are	three	mandatory	arguments:

exp	—	experiment	name	in	low	case.

band	—	band	name	in	the	low	case.

obs	—	observations	index.	Should	be	a	positive	number	not	exceeding	the	total	number	of	observations	in	the	experiment.

-h	—	prints	a	brief	information	about	the	wrapper.

-H	—	print	extended	manual	(this	text)

--version	—	prints	the	wrapper	version.

-v	—	verbosity	level.	An	integer	parameter	that	describes	how	detailed	informational	messages	will	be	printed	at	the	screen.	Error	message	will	be	printed	regardless	of	verbosity	level.	pt.py	will
print.

0	—	silent	mode.	No	information	messages	are	printed.

1	—	moderate	verbosity	(default)

2	—	verbose	mode.	PIMA	commands	are	printed	at	the	screen	before	execution.

>2	—	debugging	mode.	More	verbose	than	2.

-r	—	dry	run.	pt.py	prints	commands	that	it	is	about	to	execute,	but	does	not	execute	them.

-s	—	to	use	static	build	of	PIMA.	The	directory	of	the	static	build	is	defined	in	pima_local.py.	This	option	may	be	useful	when	you	have	several	versions	of	PIMA.

[opts]	—	additional	options,	pairs	keywords:	value,	where	keywords	is	a	recognized	PIMA	keyword.	Wrapper	pt.py	may	override	values	of	some	keywords	defined	in	the	control	file.	Values	of	the
keywords	defined	at	the	end	of	the	wrapper	command	line	have	the	highest	priority	and	override	the	values	set	by	the	wrapper.

pr.py	—	re-fringe	VLBI	experiment.

Task	pr.py	implements	interface	Solve	&arrow;	PIMA.	It	1)	analyzes	Solve	residual	file,	2)	finds	observations	that	have	been	suppressed,	computes	predicted	path	delay	on	the	basis	of	a	priori	path	delay
and	adjustments	from	the	Solve	solution	and	computes	correction	to	the	a	priori	path	delay	with	respect	to	the	model	used	by	the	correlator;	3)	generates	a	command	file	that	calls	PIMA	with	parameters
of	the	search	window	centered	with	respect	to	the	updated	a	priori	path	delay	and	with	the	specified	window	semi-width;	4)	executes	this	command	file;	5)	creates	databases	in	GVF	format;	6)	updates
automatic	suppression	status.

There	are	several	situations	when	PIMA	re-fringe	procedure	helps	to	improve	results:

1.	 There	was	a	strong	RFI	and	fringe	fitting	procedure	picked	up	fringes	from	the	FRI;

2.	 A	priori	delay	rate	was	low	and	fringe	fitting	procedure	picked	up	fringes	from	the	phase	calibration	signal.

3.	 There	was	a	significant	phase	distortion	in	IFs	after	applying	measured	phase	calibration	and	bandpass	calibration.	As	a	result,	the	amplitude	of	the	secondary	maximum	of	2D	Fourier	transform
that	in	the	absence	of	phase	distortion	would	be	below	the	amplitude	of	the	main	maximum	became	higher	than	the	level	of	the	main	maximum.

4.	 A	priori	source	position	(and	in	a	case	of	RadioAstron,	a	priori	Space	Radio	Telescope	position)	was	significantly	(more	than	1	mas)	improved.	Significant	errors	in	a	priori	source	position	may	result
in	quadratic	term	of	fringe	phase	versus	time.

5.	 A	source	has	marginal	SNR	(typically	in	range	4.5–6.5),	and	the	thermal	noise	reduced	the	main	maximum	and	increased	a	secondary	maximum	above	the	amplitude	of	the	main	maximum.

VTD/Post-Solve	interactive	solution	should	be	made	first.	Option	Print	residu(A)ls:	ON	should	be	turn	on,	the	spool	file	with	solution	listing	be	rewound,	and	residuals	be	generated	(command	Q).	The
the	spool	file	with	residuals	should	be	copied	into	file	VVVVVV/EEE/EEE_B_init.spl.	An	analyst	should	be	check	carefully	the	residual	file.	In	particular,	an	analyst	should	check	a)	the	experiment	name
and	band	name	:-);	b)	whether	solution	is	correct	(wrms	of	residuals	is	close	to	what	it	is	supposed	to	be);	c)	the	spool	file	contains	residuals.	Residual	section	starts	after	line	Residuals	from	Solve
Symbols	>	at	the	8-th	position	marks	suppressed	observation.	All	suppressed	observations	will	be	re-fringed.

There	is	a	way	to	change	the	list	of	observations	that	will	be	re-fringed.	If	an	analyst	does	not	want	to	re-fringe	some	observations,	the	lines	that	correspond	to	these	observations	should	be	either
removed	from	the	listing	file	or	the	character	at	the	8th	column	of	the	rows	that	correspond	to	those	observations	should	be	changed	to	K.	Alternatively,	if	an	analyst	would	like	to	re-fringe	a	given
observation	even	it	it	is	not	suppress,	the	character	at	8th	column	should	be	changed	to	R.	Re-fringing	an	observation	of	a	source	that	had	a	priori	position	errors	exceeding	1	arcsec	may	improve	the	SNR.

Usage:	pr.py	
													[-h]	[--version]	[-v	value]	[-r]	[-s]	[-H]
													exp	band	snr
													[opts]

Wrapper	has	general	options	followed	by	three	mandatory	positional	arguments	followed	by	PIMA	options	that	are	pairs	keyword:	value.	There	are	three	mandatory	arguments:

exp	—	experiment	name	in	low	case.

band	—	band	name	in	the	low	case.

snr	—	SNR	limit.	Should	be	a	positive	number.	Typical	value	is	4.8.	
NB:	SNR	detection	limit	is	lower	for	re-fringing	procedure,	because	the	search	window	is	less.

-h	—	prints	a	brief	information	about	the	wrapper.

-H	—	print	extended	manual	(this	text)

--version	—	prints	the	wrapper	version.

-v	—	verbosity	level.	An	integer	parameter	that	describes	how	detailed	informational	messages	will	be	printed	at	the	screen.	Error	message	will	be	printed	regardless	of	verbosity	level.	pr.py	will
print.

0	—	silent	mode.	No	information	messages	are	printed

1	—	moderate	verbosity	(default).	Only	messages	about	finish	of	the	procedure	is	printed.

>2	—	debugging	mode.	More	verbose	than	1.

-r	—	dry	run.	pr.py	prints	commands	that	it	is	about	to	execute,	but	does	not	execute	them.

-s	—	to	use	static	build	of	PIMA.	The	directory	of	the	static	build	is	defined	in	pima_local.py.	This	option	may	be	useful	when	you	have	several	versions	of	PIMA.

[opts]	—	additional	options:

-delwin	—	specifies	the	semi-width	of	the	search	window	with	respect	to	group	delay.	Units:	ns.	By	default,	pr.py	selects	the	window	semi-width	itself	depending	on	frequency.

-nodb	—	does	not	create	the	database	upon	completion	of	re-fringing.	This	option	is	required	for	processing	the	low	band	of	a	dual-band	experiment.

The	wrapper	creates	log	file	VVVVVV/EEE/EEE_samb.log.

	

pu.py	—	update	suppression	status	after	re-fringing.

VTD/Post-Solve	supports	so-called	automatic	suppression	status.	This	status	depends	on	a	number	of	factors	including	detection	status	and	other	parameters.	When	PIMA	creates	a	GVF	database	it	sets
this	status	for	version	1.	But	the	status	does	not	automatically	propagate	to	version	2	and	higher.	Wrapper	pu.py	propagates	the	status	from	version	1	database	to	the	higher	version.

Let	us	consider	the	following	situation.	A	given	observations	had	SNR	4.7	and	therefore	was	treated	as	unconditionally	suppressed.	VTD/post-Solve	does	not	show	such	observation	and	does	not	allow	to
restore	it.	After	re-fringing	then	SNR	grew	to	6.8,	i.e.	the	observations	was	detected.	Task	mkdb	created	GVF	database	version	1.	The	suppression	status	is	version	dependent.	The	observation	is	marked	as
good	in	version	1,	but	unconditionally	suppressed	in	version	2.

Wrapper	pu.py	will	set	status	"suppressed,	but	recovered"	in	version	2.	Then	a	user	can	reset	status	to	"good".

usage:	pu.py	
													[-h]	[--version]	[-v	value]	[-r]	[-s]	[-H]
													exp

	

automap.py	—	Automatic	imaging	of	a	given	visibility	file.

This	wrapper	calls	DIFMAP	and	preforms	automatic	imaging	using	script	pima_mupet_01.dfm	developed	by	Martin	Shepherd	and	Greg	Taylor.

usage:	automap.py	
													[--version]
													uva_file

The	input	for	the	wrapper	is	the	file	with	averaged	calibrated	visibilities	in	FITS-IDI	format.

The	wrapper	assumes	the	filename	with	averaged	calibrated	visibilities	has	the	following	form	SSSSSS/EEE_uvs/JJJJJJJJJJ_B_uva.fits	where	SSSSSS	is	the	directory	specified	in	the	keyword
SESS_CODE	of	PIMA	control	file.	The	wrapper	generates	5	output	files:	SSSSSS/EEE_uvs/JJJJJJJJJJ_B_map.fits	—	FITS	image,	SSSSSS/EEE_uvs/JJJJJJJJJJ_B_uvs.fits	—	self-calibrated,	scan
averaged	visibilities	in	FITS	format,	SSSSSS/EEE_uvs/JJJJJJJJJJ_B.mod	—	ascii	file	with	Clean	components	of	the	image,	SSSSSS/EEE_uvs/JJJJJJJJJJ_B.win	—	coordinates	of	four	corners	of
CLEAN	windows	used	be	the	imaging	process,	SSSSSS/EEE_uvs/JJJJJJJJJJ_B.par	—	command	file	created	by	the	DIFMAP.

The	quality	of	automatic	image	may	or	may	not	be	satisfactory.	Automatic	image	does	not	perform	flagging.	If	the	visibility	data	are	either	too	high	or	too	low	for	some	IFs	due	to	errors	in	amplitude
calibration,	or	a	portion	of	data	has	garbage	visibilities	at	some	station(s)	because	the	antenna(s)	were	not	on	source,	the	quality	of	automatic	image	will	be	disappointing	at	best,	or	totally	garbage	at
worst.	Running	onof	and	gaco	tasks	usually	solve	these	problems	and	substantially	reduces	the	chances	that	the	automatically	generated	images	will	have	unsatisfactory	quality.

In	general,	analyst	should	scrutinize	automatically	generated	images	and	decide	whether	to	keep	them	or	re-image	them	manually.

	

imadir.py	—	Automatic	imaging	for	all	files	with	averaged	visibilities	in	a	given	directory.

usage:	imadir.py	
													[-h]	[--version]	[-pict]	[-H]
													directory

This	wrapper	scans	the	specified	directory,	searches	file	with	ending	uva.fits	or	uvm.fits	and	executes	wrapper	automap.py	for	each	file,	i.e.	generates	automatically	the	image	and	picture	files

-h	—	prints	a	brief	information	about	the	wrapper.

-H	—	print	extended	manual	(this	text)

--version	—	prints	the	wrapper	version.

--pict	—	generates	only	picture	files	from	results	of	imaging	without	image	re-generation.	The	following	pictures	gif-format	are	generated	for	each	image:	files
SSSSSS/EEE_uvs/JJJJJJJJJJ_B_map.gif	and	scan-averaged	self-calibrated	visibilities	as	a	function	of	baseline	length	in	files	SSSSSS/EEE_uvs/JJJJJJJJJJ_B_uvs.gif.

This	document	was	prepared	by	Leonid	Petrov	
Last	update:	2025.01.07

