
PIMAPIMA Python wrappers
Date of last modification: 2016.06.25_21:36:59

PIMAPIMA was designed to be "scriptable", i.e. called from another programs. The
interface: control file that have to define all parameters, task and command line
arguments that override the keywords defined in the control file is somewhat
heavy weight. PIMAPIMA distribution provides 4 scripts and users are encouraged
to develop their own. These scripts are also called wrappers, because they wrap
calls to various PIMAPIMA tasks.

Contents:

pf.py — general fringe fitting

pt.py — trial fringe fitting

pr.py — re-fringing

pu.py — update suppression status after refringing

automap.py — automatic image restoration of an experiment

imadir.py — automatic imaging using all visibility files at a given directory.

The wrappers do not provide new functionality that PIMAPIMA does not have. They significantly
simplify the user interface by expense of reducing functionality and by imposing rules on file
names. If you need full functionality, for instance for processing unusual experiment, PIMAPIMA
wrappers will not work for you. But the use of wrappers may be sufficient for processing
many experiments.

Wrappers assume the file names obey the following convention:

PIMAPIMA control files are located in directory VVVVV/EEE, where VVVVV is the root
directory of vlbi experiments specified by --pima-exp-dir during configuration and EEE
is the experiment name specified in the keyword SESS_CODE of the PIMAPIMA control
file.

The following wrappers are provided:

pf.py — Fringe fitting. Includes tasks data loading, parse log files, coarse fringe fitting,

PIMA wrappers

-1-

bandpass computation, fine fringe fitting, data calibration and splitting, generation of
the output database in GVF format, auto-imaging, generation of image pictures, etc.

pt.py — Trial fringe fitting. Runs a trial fringe fitting procedure for a given observation.

pr.py — Resolving sub-ambiguities. Parses the listing of the VTD/Post-Solve run,
generates control file for re-fringing with a narrow search window, executes that
control file, and updates the database.

automap.py — automatic imaging using given averaged and calibrated visibility file.

imadir.py — automatic imaging all the sources with averaged and calibrated
visibilities found in a given directory.

pf.py — a general PIMAPIMA wrapper.

usage: pf.py
 [-h] [--version] [-v value] [-r] [-s] [-H]
 exp band
 {load,logs,gean,coarse,bpas,fine,mkdb,mktxt,splt,gain,autm,pict,map,sres,gaco}
 [opts]

The wrapper has general options followed by three mandatory positional arguments
followed by task specific optional arguments. General options that follow immediately after
the wrapper name and before positional arguments:

-h — prints a brief information about the wrapper.

-H — print extended manual (this text)

--version — prints the wrapper version.

-v — verbosity level. An integer parameter that describes how detailed informational
messages will be printed at the screen. Error message will be printed regardless of
verbosity level. pf.py will print.

0 — silent mode. No information messages are printed.

1 — moderate verbosity (default)

2 — verbose mode. PIMAPIMA commands are printed at the screen before
execution.

>2 — debugging mode. More verbose than 2.

PIMA wrappers

-2-

-r — dry run. pf.py prints commands that it is about to execute, but does not execute
them.

-s — to use static build of PIMAPIMA. The directory of the static build is defined in
pima_local.py. This option may be useful when you have several versions of PIMAPIMA.

[opts] — additional options. Some tasks have specific options that starts from hyphen.
These options may be followed up by pairs keywords: value, where keywords is a
recognized PIMAPIMA keyword. Wrapper pf.py may override values of some keywords
defined in the control file. Values of the keywords defined at the end of the wrapper
command line have the highest priority and override the values set by the wrapper.

There are three mandatory arguments:

exp — experiment name in low case.

band — band name in the low case.

task — take name. A task may follow by task specific options. The task specific
options cannot be be put before the task name.

Supported tasks:

load [-nopcal] — loading a database into internal PIMAPIMA data structures. This task
searches for SSSSS/EEE_uv.exc file. If such a file exists, it purges its contents. If
during executing PIMAPIMA task load it finds that there are bad points, and the keyword
UV_EXCLUDE_FILE: AUTO, it runs the this task the second time, and if necessary,
the second time. Option -nopcal instructs PIMAPIMA not to load phase calibration.

This task creates log file VVVVV/EEE/EEE_load.log.

logs — searches for all log files in VVVVV/EEE directory, parses them and writes
down in PIMA ANTAB format. This task assumes log names are either in IVS format:
VVVVV/EEE/EEElog.SS format, or VLBA format: VVVVV/EEE/EEESS.log, or in KVN
format: VVVVV/EEE/EEEKK.log, where SS is a two character long station code, KK is
a three character long name of a KVN station: one of KTN, KUS, or KYS. The output
file has format VVVVV/EEE/EEE_SS.ant. This task creates log file
VVVVV/EEE/EEE_log_antab.log.

gean — this task searches for log files in PIMA ANTAB format generated, for example,
by wrapper task logs and/or for legacy VLBI log file, parses them and loads system
temperature, cable calibration atmospheric pressure, air temperature, and relative
humidity into internal data structure of PIMAPIMA. It searches for parsed log files in PIMA
ANTAB format with file names VVVVV/EEE/EEE_SS.ant and/or VLBA legacy log with

PIMA wrappers

-3-

name VVVVVV/EEE/EEEcal.vlba. When the tasks processes legacy VLBA logs, it
loads phase calibration phase and amplitude as well as cable calibration. NB: Legacy
log files should not be used for processing VLBA experiments recorded with a digital
backend since 2014. If FITS-IDI files had calibration information, task gean overwrites
it. This task creates log file VVVVV/EEE/EEE_gean.log.

coarse — this task performs fringe search in the coarse mode. The goal of performing
coarse fringe search is a) to identify failures; b) to find a list of high SNR scans.
Coarse fringe search runs in a simplified mode in order to speed up computations. No
bandpass calibration, no bandpass mask, no phase calibration mask, no
oversampling is applied. Fringe fit uses single polarization data. Fine fringe fits
algorithm uses a simplistic parabolic fit. The task generates the output file with fringe
fitting results with name VVVVV/EEE/EEE_B_nobps.fri and fringe fitting residuals with
name VVVVV/EEE/EEE_B_nobps.frr overriding names specified in the control file by
keywords FRINGE_FILE and FRIRES_FILEpf.py still can override these names. The
task creates log file with name VVVVVV/EEE/EEE_B_coarse.log.

bpas — this task performs computation of the bandpass and, in a case of dual-
polarization data, polarization bandpass. This task has two modes: inspection mode
that is invoked with option -insp and production mode. The task in the inspection
mode computes bandpass in the init mode. It generates two plots for observations
with the maximum SNR with at all baselines with the reference stations. The first plot
shows normalized amplitude (green), a model fit to the normalized amplitude (blue),
and amplitude of auto-correlation (red). The second plot shows residual phases
(green) and the model fit to residual phases (blue). The task invoked in the inspection
node creates a bandpass with name VVVVV/EEE/EEE_B_init.bps and, if dual-band
data are processed, the polarization bandpass with name
VVVVV/EEE/EEE_B_init_plr.bps as well.

When task is invoked in the production mode, i.e. without using -insp option, it
computes the bandpass, and polarization.

fine — runs fringe fitting in the fine mode. Unless option -keep is specified, this task
will purge fringe file and fringe residual file if they exist before processing the first
observation. Option -keep suppresses deletion of existing fringe file and fringe
residual files. The list of observations to be processed is determined by keywords
OBS, INCLUDE_OBS_FILE, EXCLUDE_OBS_FILE

The task creates log file with name VVVVVV/EEE/EEE_B_fine.log.

mkdb — generates of the output database in GVF format using fringe fitting results.

The task creates log file with name VVVVVV/EEE/EEE_mkdb.log.

mktxt — — generates of the output database in TEXT format using fringe fitting

PIMA wrappers

-4-

results.

The task creates log file with name VVVVVV/EEE/EEE_mktxt.log.

gain — updates gain table into internal pimapima data structure. The task checks two files
vlba_gains.key and ivs_gains.key in the share directory specified by options --pima-
share during PIMAPIMA installation. The task does not issue a message if it does not find
gain information for one or more stations, since this situation is considered normal.
However, if gain is missing for certain stations(s), observations at baselines with such
stations will not be used by task splt, and therefore, cannot contribute to imaging.

This task updates the gain only for frequencies and stations specified in the control file
(BEG_FRQ, END_FRQ, FRQ_GRP) and found in the gain file. Gain for for other
stations and/or other frequencies remains unchanged.

The task creates log file with name VVVVVV/EEE/EEE_B_gain.log. The log file
contains information about gain information in PIMAPIMA data structure after running this
task. It is strongly advised to examine this log file to be sure that correct gain is
applied.

splt — performs calibration of visibilities for system temperature and gain; performs
amplitude renormalization, applies results of fringe fitting, averages visibilities over
time and frequencies, and writes calibrated and averaged visibilities into output files in
FITS format.

The task creates log file with name VVVVVV/EEE/EEE_B_splt.log.

autm — performs automatic imaging. Unless option -sou is specified, this task
searches for all fits files with calibrated and averaged visibilities with in directory
SSSSSS/EEE_uvs with suffix _uva.fits and runs fringe fitting for all these sources.
Option -sou followed by the value of source names separated by comma instructs
autm to perform automatic imaging for these sources only. Source names can be
either in B1950 or J2000. PIMAPIMA does not report an error if does not find one or more
input files with calibrated and averaged visibilities.

The output files are created for each source: map in FITS image format with suffix
_map.fits, self-calibrated visibilities in FITS-format, and ascii log file with suffix dfm.log.

The task creates log file with name VVVVVV/EEE/EEE_autm.log.

pict — generate pictures files in gif format for all source images in the image directory
for a given experiment, given band. This task searches for pair of image file in FITS
format with suffix _map.fits and self-calibrated visibilities with suffix _uvs.fits in image
directory SSSSS/EEE_uvs. It generates two files fir each input: picture of the image in
gif format with suffix _map.gif and scan-averaged self-calibrated visibilities versus
baseline length in gif format with suffix _uvs.gif.

PIMA wrappers

-5-

The task creates log file with name VVVVVV/EEE/EEE_autm.log.

sres — runs task gain (see above) and task splt for reference sources defined in file
VVVVV/EEE_B_ref.sou. The file may define sources either with B1950 or J2000
names, one source per line. Lines that start with # are considered as comments and
ignored.

The task creates log file with name VVVVVV/EEE/EEE_sres.log.

gaco — computes gain correction for reference source defined in the reference source
file with name VVVVV/EEE_B_ref.sou. The file may define sources either with B1950
or J2000 names, one source per line. Lines that start with # are considered as
comments and ignored.

map — combines tasks gain, splt, autm, gain. It is just consecutively executes these
tasks.

pt.py — trial fringe fitting.

This wrapper performs fringe fit for an observation with given index. Fringe results are
written in /tmp/1.fri and fringe residuals are written in /tmp/1.frr overriding keywords
FRINGE_FILE and FRIRES_FILE. The task does not purge these files, and therefore, it
appends results to their end. Task pt.py shows an 1D plot of residual phases and
amplitudes versus frequency and a similar plot of residuals versus time. Examining fringe
plots is the main function of this task. Task DEBUG_LEVEL: 6, and therefore, it prints
verbose report about fringe fitting.

usage: pt.py
 [-h] [--version] [-v value] [-r] [-s] [-H]
 exp band obs
 [opts]

Wrapper has general options followed by three mandatory positional arguments followed by
PIMAPIMA options that are pairs keyword: value. There are three mandatory arguments:

exp — experiment name in low case.

band — band name in the low case.

obs — observations index. Should be a positive number not exceeding the total
number of observations in the experiment.

-h — prints a brief information about the wrapper.

PIMA wrappers

-6-

-H — print extended manual (this text)

--version — prints the wrapper version.

-v — verbosity level. An integer parameter that describes how detailed informational
messages will be printed at the screen. Error message will be printed regardless of
verbosity level. pt.py will print.

0 — silent mode. No information messages are printed.

1 — moderate verbosity (default)

2 — verbose mode. PIMAPIMA commands are printed at the screen before
execution.

>2 — debugging mode. More verbose than 2.

-r — dry run. pt.py prints commands that it is about to execute, but does not execute
them.

-s — to use static build of PIMAPIMA. The directory of the static build is defined in
pima_local.py. This option may be useful when you have several versions of PIMAPIMA.

[opts] — additional options, pairs keywords: value, where keywords is a recognized
PIMAPIMA keyword. Wrapper pt.py may override values of some keywords defined in the
control file. Values of the keywords defined at the end of the wrapper command line
have the highest priority and override the values set by the wrapper.

pr.py — re-fringe VLBI experiment.

Task pr.py implements interface Solve &arrow; PIMAPIMA. It 1) analyzes Solve residual file, 2)
finds observations that have been suppressed, computes predicted path delay on the basis
of a priori path delay and adjustments from the Solve solution and computes correction to
the a priori path delay with respect to the model used by the correlator; 3) generates a
command file that calls PIMAPIMA with parameters of the search window centered with respect
to the updated a priori path delay and with the specified window semi-width; 4) executes
this command file; 5) creates databases in GVF format; 6) updates automatic suppression
status.

There are several situations when PIMAPIMA re-fringe procedure helps to improve results:

1. There was a strong RFI and fringe fitting procedure picked up fringes from the FRI;

2. A priori delay rate was low and fringe fitting procedure picked up fringes from the
phase calibration signal.

PIMA wrappers

-7-

3. There was a significant phase distortion in IFs after applying measured phase
calibration and bandpass calibration. As a result, the amplitude of the secondary
maximum of 2D Fourier transform that in the absence of phase distortion would be
below the amplitude of the main maximum became higher than the level of the main
maximum.

4. A priori source position (and in a case of RadioAstron, a priori Space Radio
Telescope position) was significantly (more than 1 mas) improved. Significant errors in
a priori source position may result in quadratic term of fringe phase versus time.

5. A source has marginal SNR (typically in range 4.5–6.5), and the thermal noise
reduced the main maximum and increased a secondary maximum above the
amplitude of the main maximum.

VTD/Post-Solve interactive solution should be made first. Option Print residu(A)ls: ON
should be turn on, the spool file with solution listing be rewound, and residuals be
generated (command Q). The the spool file with residuals should be copied into file
VVVVVV/EEE/EEE_B_init.spl. An analyst should be check carefully the residual file. In
particular, an analyst should check a) the experiment name and band name :-); b) whether
solution is correct (wrms of residuals is close to what it is supposed to be); c) the spool file
contains residuals. Residual section starts after line Residuals from Solve Symbols > at the
8-th position marks suppressed observation. All suppressed observations will be re-fringed.

There is a way to change the list of observations that will be re-fringed. If an analyst does
not want to re-fringe some observations, the lines that correspond to these observations
should be either removed from the listing file or the character at the 8th column of the rows
that correspond to those observations should be changed to K. Alternatively, if an analyst
would like to re-fringe a given observation even it it is not suppress, the character at 8th
column should be changed to R. Re-fringing an observation of a source that had a priori
position errors exceeding 1 arcsec may improve the SNR.

Usage: pr.py
 [-h] [--version] [-v value] [-r] [-s] [-H]
 exp band snr
 [opts]

Wrapper has general options followed by three mandatory positional arguments followed by
PIMAPIMA options that are pairs keyword: value. There are three mandatory arguments:

exp — experiment name in low case.

band — band name in the low case.

snr — SNR limit. Should be a positive number. Typical value is 4.8.
NB: SNR detection limit is lower for re-fringing procedure, because the search

PIMA wrappers

-8-

window is less.

-h — prints a brief information about the wrapper.

-H — print extended manual (this text)

--version — prints the wrapper version.

-v — verbosity level. An integer parameter that describes how detailed informational
messages will be printed at the screen. Error message will be printed regardless of
verbosity level. pr.py will print.

0 — silent mode. No information messages are printed

1 — moderate verbosity (default). Only messages about finish of the procedure
is printed.

>2 — debugging mode. More verbose than 1.

-r — dry run. pr.py prints commands that it is about to execute, but does not execute
them.

-s — to use static build of PIMAPIMA. The directory of the static build is defined in
pima_local.py. This option may be useful when you have several versions of PIMAPIMA.

[opts] — additional options:

-delwin — specifies the semi-width of the search window with respect to group
delay. Units: ns. By default, pr.py selects the window semi-width itself
depending on frequency.

-nodb — does not create the database upon completion of re-fringing. This
option is required for processing the low band of a dual-band experiment.

The wrapper creates log file VVVVVV/EEE/EEE_samb.log.

pu.py — update suppression status after re-fringing.

VTD/Post-Solve supports so-called automatic suppression status. This status depends on a
number of factors including detection status and other parameters. When PIMAPIMA creates a
GVF database it sets this status for version 1. But the status does not automatically
propagate to version 2 and higher. Wrapper pu.py propagates the status from version 1
database to the higher version.

PIMA wrappers

-9-

Let us consider the following situation. A given observations had SNR 4.7 and therefore
was treated as unconditionally suppressed. VTD/post-Solve does not show such
observation and does not allow to restore it. After re-fringing then SNR grew to 6.8, i.e. the
observations was detected. Task mkdb created GVF database version 1. The suppression
status is version dependent. The observation is marked as good in version 1, but
unconditionally suppressed in version 2.

Wrapper pu.py will set status "suppressed, but recovered" in version 2. Then a user can
reset status to "good".

usage: pu.py
 [-h] [--version] [-v value] [-r] [-s] [-H]
 exp

automap.py — Automatic imaging of a given visibility
file.

This wrapper calls DIFMAP and preforms automatic imaging using script
pima_mupet_01.dfm developed by Martin Shepherd and Greg Taylor.

usage: automap.py
 [--version]
 uva_file

The input for the wrapper is the file with averaged calibrated visibilities in FITS-IDI format.

The wrapper assumes the filename with averaged calibrated visibilities has the following
form SSSSSS/EEE_uvs/JJJJJJJJJJ_B_uva.fits where SSSSSS is the directory specified in
the keyword SESS_CODE of PIMAPIMA control file. The wrapper generates 5 output files:
SSSSSS/EEE_uvs/JJJJJJJJJJ_B_map.fits — FITS image,
SSSSSS/EEE_uvs/JJJJJJJJJJ_B_uvs.fits — self-calibrated, scan averaged visibilities in
FITS format, SSSSSS/EEE_uvs/JJJJJJJJJJ_B.mod — ascii file with Clean components of
the image, SSSSSS/EEE_uvs/JJJJJJJJJJ_B.win — coordinates of four corners of CLEAN
windows used be the imaging process, SSSSSS/EEE_uvs/JJJJJJJJJJ_B.par — command
file created by the DIFMAP.

The quality of automatic image may or may not be satisfactory. Automatic image does not
perform flagging. If the visibility data are either too high or too low for some IFs due to errors
in amplitude calibration, or a portion of data has garbage visibilities at some station(s)
because the antenna(s) were not on source, the quality of automatic image will be
disappointing at best, or totally garbage at worst. Running onof and gaco tasks usually
solve these problems and substantially reduces the chances that the automatically
generated images will have unsatisfactory quality.

PIMA wrappers

-10-

In general, analyst should scrutinize automatically generated images and decide whether to
keep them or re-image them manually.

imadir.py — Automatic imaging for all files with
averaged visibilities in a given directory.

usage: imadir.py
 [-h] [--version] [-pict] [-H]
 directory

This wrapper scans the specified directory, searches file with ending uva.fits or uvm.fits and
executes wrapper automap.py for each file, i.e. generates automatically the image and
picture files

-h — prints a brief information about the wrapper.

-H — print extended manual (this text)

--version — prints the wrapper version.

--pict — generates only picture files from results of imaging without image re-
generation. The following pictures gif-format are generated for each image: files
SSSSSS/EEE_uvs/JJJJJJJJJJ_B_map.gif and scan-averaged self-calibrated
visibilities as a function of baseline length in files
SSSSSS/EEE_uvs/JJJJJJJJJJ_B_uvs.gif.

This web page was prepared by Leonid Petrov ()
Last update:

PIMA wrappers

-11-

	PIMA Python wrappers
	pf.py — a general PIMA wrapper.
	pt.py — trial fringe fitting.
	pr.py — re-fringe VLBI experiment.
	pu.py — update suppression status after re-fringing.
	automap.py — Automatic imaging of a given visibility file.
	imadir.py — Automatic imaging for all files with averaged visibilities in a given directory.

