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Abstract:

Discussion about the optimal strategy for outliers elimination in LSQ for the case of full

normal matrix and B

3

D normal matrix. Algorithm implemented in SOLVE is described.

When we deal with real observations we used to disclose that the set of the observations

can be partitioned onto two subsets: normal observations and abnormal observations. These

two datasets have di�erent statistics. Abnormal observations | outliers usually stem from some

misfunction of appliance (although sometimes they may stem from the setbacks of the theoretical

model). The presence of strong outliers may distort both the adjustments and the estimates of

their uncertainties. It is essential to be able to detect outliers and to remove them from the

solution. Various statistical criteria are used to separate normal and abnormal observations.

The approaches how to do it will be discussed in chapter three. We'll discuss how to update

the solution for removing outliers without re-calculation solution anew in the �rst two chapters.

The way how automatic outliers elimination procedure is implemented in SOLVE is discussed

in the last chapter.

1 Correction of solution for the case of full normal matrix

Assume that we have estimates of the parameters and their covariance matrix and we would like

to update our solution for elimination of the k-th observation. Revised normal matrix without

the k-th equation can be written in the form
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where N | is initial normal matrix, a

k

| expelled equation of conditions, w

k

| its weight.

We can transform (1) using lemma about inversion of expanded matrix
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We can �nd correction to the vector of adjustments obtained using all equations for removing

the k-th equation . Corrected vector of adjustments x̂

r

is

x̂
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) (4)

where z | normal vector calculated for all equations. Having substituted expression (3) for
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The asymptotic number of pairs of operations: multiplication and addition needed for up-

dating adjustments and their covariance matrix is Op

u

(F ) �

3

2

m

2

where m is the number of

parameters. The number of operations needed for obtaining adjustments in full solution is

Op

s

(F ) �

1

6

m

3

(and

1

3

m

3

for obtaining covariance matrix). Thus, updating solution using

expressions (3), (5) is faster by m=3 times than entire recalculation it anew.

2 Correction of solution for the case of bordered block tridiag-

onal normal matrix (B

3

D)

When we solve normal equations using B

3

D method we can try to exploit the sparseness of

rejected equation of condition. Let's apply expressions (3), (5) to the blocks of submatrices

of bordered block tridiagonal normal matrix. Given the d-th observation in the i-th block is

rejected, the following algorithm can be proposed:
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III. Calculation of corrected global adjustments and global-global block of the covariance

matrix:
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IV. Calculation of corrected estimates of the local parameters, local-global and local-local

blocks of the covariance matrix:
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It is worth to notice that o�-diagonal blocks
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of the covariance matrix are used in the

proposed algorithm. The expressions for these blocks were omitted in [1]. Arbitrary o�-diagonal

block of the covariance matrix can be obtained by the following way:
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Thus, calculation of blocks of the covariance matrix goes down of the down-diagonal block

row by row and then column by column. Each column of the blocks is calculated by the following

recurrent algorithm:
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Let's calculate asymptotic computational expenses of the proposed algorithms under as-

sumption that n� 1.

Calculation of the set of vectors q takes Op
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ance matrix takes Op
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Thus, computational complexity of updating the solution in B
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((4 + n)l + g) pairs of operations. But we should also take into account computational ex-

penses for calculation of all o�-diagonal blocks of the covariance matrix. They are not usually

needed for ordinary solution and these expenses should be considered as pure overheads of pro-

posed scheme of outliers rejection. Op
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computational expenses for the di�erent steps of B
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D algorithm:
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I mean blocks away from the main diagonal, main down subdiagonal and main up subdiagonal.
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where l | the number of local parameters in one group, n | the number of groups of local

parameters, g | the number of global parameters.

Which strategy of outliers rejection for the case of B

3

D has advantages: to recalculate

solution anew or to update it? Computational time for the �rst strategy can be expressed as

T

a

= s+ k � s+ c

c

(9)

where s | time for obtaining adjustments (without calculation of the covariance matrix), k

| the number of outliers and c

c

| time for calculation of the covariance matrix (only blocks

which correspond to non-zero blocks of the normal matrix). Computational time for the second

strategy is expressed as

T

u
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o

+ k � u (10)

where c

o

| computational expenses for calculation of the o�-diagonal blocks of the covariance

matrix, u | computational time for one update of the adjustments and covariance matrices.

Let's try to express all constituents of the expressions (9), (10) via s for the typical values

of n, l, g which we have in the problem of parameters estimation in VLBI data analysis.

First of all, notice that
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If l = g, then this ratio is about 1, if l� g then it is
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c

o

s
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� 0:12n and

computational expenses for calculation of the o�-diagonal submatrices become negligible when

l � g.
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If l = g then
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.

We have n=25, l=20, g=20 for typical session. Then

u

s

� 0:1

Now we can easily evaluate T

a

and T

u

for typical session (when n=25, l=20, g=20):

T

a

= (k + 2)s , T

u

= 7s+ 0:1k

We obtained rather unexpected result: there is some critical value of the number of eliminated

outliers. If the number of outliers which we are going to eliminate less than this critical value it
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is more pro�table to recalculate the solution anew. If the number of outliers exceeds this critical

number then updating solution takes less time. This magic number is 6 for the typical session.

It increases linearly with increasing the number of blocks of local parameters and decreases with

increasing the ratio

g

l

.

3 How to �nd outliers?

There is no de�nite answer. We assume that normal observations belongs to one statistics but

abnormal observations belongs to another statistics. Analyzing residuals we can try to separate

them. One strategy is to declare a priori statistic. We can state that our residuals belong

to normal distribution with certain dispersion. And then having stated statistical con�dence

level we can put aside the observations which are out of considered statistical ensemble. In

practice in that case we set up the threshold and all observations with residuals higher than

this threshold we consider as outliers. The setback of this way is that we usually don't know

statistical properties of post�t residuals.

The second approach is to use some kind of a posteriori statistics. We can calculate the esti-

mate of the dispersion of distribution and to express the threshold in sigmas. Under assumption

of normal distribution the probability of the event that the observation with residual deviating

higher than 2� belongs to the statistical ensemble is 5% and deviating higher than 3� is 0.3%.

The last criterion seems to be su�cient for practical needs. However we should keep in mind

that normal distribution implies statistical independence of the residuals. It is not quite true due

to the contribution of unmodeled e�ects and the actual distribution is nearer to �

2

distribution

which is known to converge to the normal distribution when the number of degrees of freedom

goes to in�nity but it has larger \tails" than normal distribution. For this reason it appears

sometimes that 3� criterion is too sti� and should be increased to 3.5, or 4�. My preference for

the case of analysis of VLBI observations is 3:5�. As a rule of thumb we should take special care

to the statistical criteria when the pattern of out residuals shows strong systematic behavior.

If our statistical ensemble is not homogeneous it is worth to partition the set of residuals

onto some subsets. If we didn't apply baseline or station dependent reweighting we should

calculate dispersion of residuals for each baseline separately. From the other hand the presence

of outliers is able to distort reweighting constants and to force reweighting to add too much

noise to absorb the inuence of outliers. Reweighting and outliers rejection are in some extent

concurrent processes.

It is essential that the outliers should be removed in strict order: �rst the most strong

outlier. Otherwise one strong outlier may force to rejection of good observations (in some

pathological cases all observations may appear to be rejected!) since the presence of outliers

distorts adjustments and therefore the residuals itself.

4 Generalizations

Outliers rejection was mentioned in the �rst two chapters. It is worth noting that we are able to

change slightly the problem. Let we have solution of LSQ problems for K equations of conditions.

Let's �nd the correction to the solution for adding new K+1 -th equation.

To do it notice that the only thing which we should do is to change the sign in (1).
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The only consequence of such a change is that the sign in denominator in (3){(5) will dif-

fer: �(1 + w

k
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>

k

N

�1

a

k

) instead of 1� w

k
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>
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as well as in denominator in expression

for gain g used in B

3

D scheme: �(1 + c

q

) instead of 1� c

q

The problem considered can be easily generalized to the following problem: let we have the

LSQ solution for K equations of conditions. And let the k-th equation had the weight w

o

k

. How

to �nd the correction to the solution when we change the weight from w

o

k

to w

n

k

? The answer

this question is reduced to the cases considered above.

5 Implementation elimination/restoration algorithm in SOLVE

5.1 Outliers elimination

After obtaining the parameters estimates, full covariance matrix and calculation of post�t resid-

uals square root from dispersion of post�t residuals is found:

D =

v

u

u

u

u

u

t

i=N

X

i=1

(p

i

w

i

)

2

N � 1

where p

i

is post�t residual for the i-th observation, w

i

its weight and summing is done either over

all used observations for all baselines or over all used observations for the certain b-th baseline.

The quantity p

n

i

=

p

i

w

i

D

we call here normalized residual. Two kinds of normalized residuals

can be used depending on what kind of dispersion is used for normalization: baseline-dependent

dispersion calculated for all observations of the baseline where the i-th observation has been

done or dispersion calculated for all used observations of the database.

Two criteria are used for outlier detection: threshold criterion and n� cuto� criterion. Ob-

servations with post�t residuals larger in modulo than the speci�ed threshold and observations

with normalized residuals exceeding in modulo the speci�ed cuto� limit are marked as outliers.

One of these criteria or both can be used. The outlier with maximal post�t residual is found

among the set of outliers

3

.

Then estimates of the parameters, full covariance matrix are updated for elimination of the

most considerable outlier, all post�t residuals are recalculated, statistics are calculated anew

and the observation yielded this outlier is suppresed for further participation in estimation. The

process is iterated until no one outlier will be detected.

5.2 Restoration previously suppressed observations

All observations can be partitioned onto three categories: 1) observations used in solution; 2)

observations which were not used in solution but are in principle restorable; 3) observation which

were not used in solution and which are marked as not restorable in principle (no fringe detected,

the lack of ionosphere correction and etc). Inverted threshold and cuto� n� criterion is applied

to the observations from the second group: observations with post�t residuals less in modulo

than the speci�ed threshold and observations with normalized residuals not exceeding in modulo

3

If both criteria are used then the observation with maximal normalized residual will be considered as the

most considerable outlier.
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the speci�ed cuto� limit are marked as candidates in restoration. One of these criteria or both

can be used. The candidate in restoration with minimal post�t residual is found among the set

of candidates in restoration.

Then the estimates of the parameters, full covariance matrix are updated for restoration of

the most favorable considered candidate in restoration, all post�t residuals are recalculated and

statistics are calculated anew as well as for the case of outliers elimination procedure. Restored

observation will be used in further solutions. The process is iterated until no one candidate in

restoration will be detected.

5.3 Solution update

Since SOLVE uses such a scheme of parameterization that the values of the estimated parameters

vary in very large range (up to 20 orders!) it is critical to use scaling by proper way. The normal

equations which are solved by SOLVE can be written in such a form:
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where A | is the matrix of equation of conditions, w | vector of weights, y | vector of right

parts of equation of conditions (o-c of observable under consideration), S | diagonal matrix of

scales. Matrix S is chosen by such a manner that the matrix (A
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has a unit main

diagonal. As a result we determine in \raw solution" not the vector of parameter estimates x̂

and their covariance matrix Cov(x̂; x̂
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Taking into account scaling scheme the following algorithm for update of the solution for

elimination or restoration the d-th observation in the i-th block is proposed:

I. Calculation of scaled weighted equation of conditions:
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IV. Calculation of corrected global adjustments and global-global block of the covariance

matrix:
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V. Calculation of corrected estimates of the local parameters, local-global and local-local

blocks of the covariance matrix:
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�2

Cov(x̂

k

; x̂

>

j

) = S

�2

Cov(x̂

k

; x̂

>

j

) + g q

k

q

>

j

6 Appendix

Lemma about inversion of expanded matrix:

�

A�B

>

CB

�

�1

= A

�1

�A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

BA

�1

(15)

when matrices A

�1

, C

�1

,

�

A�B

>

CB

�

�1

and

�

BA

�1

B

>

� C

�1

�

�1

exist.

This lemma can be proven by direct calculation. Let's multiply both parts of the (15) by

(A�B

>

CB) and do some algebra:

�

A

�1

�A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

BA

�1

�

�

�

A�B

>

CB

�

=

I �A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

B �A

�1

B

>

CB +A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

BA

�1

B

>

CB =

I �A

�1

B

>

CB+

�

A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

�BA

�1

B

>

� CB �A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

� C

�1

� CB

�

=

I �A

�1

B

>

CB +

�

A

�1

B

>

�

BA

�1

B

>

� C

�1

�

�1

�

�

BA

�1

B

>

�C

�1

�

� CB

�

=

I �A

�1

B

>

CB +A

�1

B

>

CB =

I

Lemma is proven.
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